Shock Acceleration Model with Postshock Turbulence for Radio Relics

Hyesung Kang (Pusan National Univ., Korea) Kang, Ryu, Jones, 2017, ApJ Dongsu Ryu (UNIST, Korea) T. W. Jones (Univ. of Minnesota, USA)

Sausage Relic in CIZA J2242.8+5301

Toothbrush Relic in 1RXS J0603.3+4214

Diffuse radio sources on Mpc scales detected in the outskirts of galaxy clusters: synchrotron radiation emitted by ~GeV electrons accelerated at structure formation shocks via DSA (Fermi I) process.

Hybrid simulations by Caprioli & Sptikovsky 2014

Properties of Astrophysical Plasmas

	solar wind (IPM)	ISM	ICM	solar flare 10 ¹⁰	
$n_{H} ({\rm cm}^{-3})$	5	0.1	10 ⁻⁴		
$T(^{\circ}K)$	10 ⁵	10 ⁴	5x10 ⁷	10 ⁵ -10 ⁶	
<i>B</i> (μG)	50	5	1	10 ⁸	
$c_{\rm s}~({\rm km/s})$	50	15	1000	50-150	
$v_A ~({\rm km/s})$	40	30	180	2000	
$\beta_P = P_g/P_B$	1.6	0.3	40	0.01	
$\alpha_P = \omega_{pe}^{} / \Omega_e^{}$	140	200	30	3	
u _s (km/s)	500	3000	2000		
$M_{\rm s}=u_{\rm s}/c_{\rm s}$	10	200	2	~	
$M_A = u_s/v_A$	13	100	11	-	

IPM

=InterPlanetary Medium

ISM

=InterStellar Medium

ICM

=IntraCluster Medium

$$\beta_p = \frac{P_{gas}}{P_B} \propto \frac{n_H T}{B^2}$$
$$\alpha_p = \frac{\omega_{p,e}}{\Omega_{c,e}} \propto \frac{\sqrt{n_e}}{B}$$

$$M_A \approx \beta_p^{1/2} M_s$$

 θ_{Bn} : obliquity angle

ICM (cluster shocks) vs ISM (SNR shocks)

higher β_p : B pressure is dynamically less important in ICM

lower α_p : wave - part. interactions and stochastic acceleration more significant in ICM

particle acceleration at collisionless shocks depend on $M_s, M_A, \theta_{Bn}, \beta_p, \alpha_p$

Particle Acceleration Processes at collisionless shocks (1) Diffusive Shock Acceleration (DSA): Fermi 100 er process - effective at quasi-parallel (Q-par) shocks show - scattering off MHD waves in the upstream ream region (2) Shock Drift Acceleratic $\vec{E}_{conv} = -\frac{1}{C}\vec{V}\times\vec{B}_0$ shocks - effective at quasi perp (grad B) at the shock front - drifting along th (3) Shock Surfin celeration (SSA) - effective at quasi-perpendicular (Q-perp) shocks - reflected by shock potential, scattered by upstream waves - moving along the convective E field, while being trapped at the shock foot (4) Turbulent Acceleration (TA): Fermi 2nd order, stochastic acceleration

- much less efficient than Fermi I
- could be important in turbulent plasmas

(5) Turbulent Reconnection (TR) of Magnetic Fields

Essential ingredients: $\vec{B}_0 \& \delta \vec{B}$

PIC simulations of Q-perp shocks (high β)

Guo, Sironi, & Narayan 2014

Evolution of an electron undergoing multiple SDA

Reflection of some electrons

due to Magnetic mirror at shock

- → Induce temperature anisotropy in the upstream
- ➔ firehose instability excites waves
- → Reflected electrons are scattered back to the shock downstream by the waves
- → Undergo multiple SDA cycles

Multiple SDA for electrons → suprathermal tail → Pre-acceleration for DSA → injected to Fermi I

Fermi 2nd order process= Turbulent acceleration

Scatterings by turbulence (randomly moving clouds) Fermi 1949

Stochastic energy gain in collisions with MHD/plasma waves
 (head-on collisions are more frequent than over-taking collisions)
 → 2nd order in energy gain (slow and inefficient)

CR particles (protons + electrons) could be accelerated via Fermi II acceleration by turbulence in ICM.

-Alfvén and slow modes become anisotropic at small scales, so scattering by Alfvenic turbulence becomes inefficient. (Cho & Lazarian 2003) -But fast mode remains isotropic at small scales, so Transit Time Damping (TTD) with fast modes is dominant in ICM (Brunetti & Lazarian 2007) 8

Reacceleration Model for Formation of Giant Radio Relics

DSA simulations in test-particle limit

in a co-expanding frame which expands with 1D spherical shock.

$$\frac{\partial \tilde{\rho}}{\partial t} + \frac{1}{a} \frac{\partial (\upsilon \tilde{\rho})}{\partial x} = -\frac{2}{ax} \tilde{\rho} \upsilon$$
 ordinary gasdynamic Eqs (high beta)

$$\frac{\partial (\tilde{\rho} \upsilon)}{\partial t} + \frac{1}{a} \frac{\partial (\tilde{\rho} \upsilon^2 + \tilde{P}_g)}{\partial x} = -\frac{2}{ax} \tilde{\rho} \upsilon^2 - \frac{\dot{a}}{a} \tilde{\rho} \upsilon - \ddot{a} x \tilde{\rho}$$

$$\frac{\partial (\tilde{\rho} \tilde{e}_g)}{\partial t} + \frac{1}{a} \frac{\partial (\tilde{\rho} \tilde{e}_g \upsilon + \tilde{P}_g \upsilon)}{\partial x} = -\frac{2}{ax} (\tilde{\rho} \tilde{e}_g \upsilon + \tilde{P}_g \upsilon) - 2\frac{\dot{a}}{a} \tilde{\rho} \tilde{e}_g - \ddot{a} x \tilde{\rho} \upsilon - \tilde{L}(x, t)$$

$$x = r/a : \text{co-moving coordinate,} \quad a = \text{expansion factor}$$

CR transport Equation for electron distribution function

 Table 1. Parameters for Model Spherical Shocks

Model	MX	<i>M</i> _{radio}	M _{s,i}	kT_1	B_1	tobs	M _{s,obs}	$kT_{2,obs}$	$u_{\rm s,obs}$	N
				(keV)	(<i>µG</i>)	(Myr)		(keV)	$(\mathrm{km} \mathrm{s}^{-1})$	(10^{-4})
Sausage	2.7	4.6	4.0	2.1	1	211	3.21	8.6	2.4×10^{3}	1.2
Toothbrush	1.5	2.8	3.6	3.0	1	144	3.03	11.2	2.7×10^{3}	5.0

M_X: Mach number inferred from X-ray observations

 $M_{\rm radio}$: Mach number estimated from observed radio spectral index at the relic edge

 $M_{s,i}$: initial shock Mach number at the onset of the simulations ($t_{age} = 0$)

 kT_1 : gas temperature in the preshock ICM

 B_1 : magnetic field strength in the preshock ICM

t_{obs}: shock age when the simulated results match the observations

 $M_{s,obs}$: shock Mach number at t_{obs}

 $kT_{2,obs}$: postshock temperature at t_{obs}

 $u_{s,obs}$: shock speed at t_{obs}

$$D_{pp} \approx \frac{p^2}{4\tau_{acc}}, \ \tau_{acc} \approx 10^8 \text{ yr}$$

 $N = P_{CRe}/P_g$: the ratio of seed CR electron pressure to gas pressure in the preshock region

The spherical shock slows down and its Mach number decreases in time.

 $S_{\nu}(R) = \int_{beam} I_{\nu}(R) d\Omega$

Smoothed over telescope beam

Fitting of Radio Flux Profiles

Fitting of Radio Integrated Spectra

black solid lines: at time of observations, t_{obs}

show reasonable agreement with observed data.

-Shock Acceleration model with M ~3 shock & postshock turbulence acceleration can reproduce observed profiles of radio flux $S_v(R)$ & integrated spectrum J_v of the Sausage and the Toothbrush relic.

-need to understand better the properties of possible turbulence generated behind weak ICM shocks.

-need to study further collisionless shocks in β =100 plasma.

-These radio relics provide observational signatures of shocks in galaxy clusters.