Modeling of Abrupt Changes in Pulsar Pulse Profile

2017 Asia-Pacific Regional IAU Meeting, Taipei, Taiwan, 3-7 July 2017

- Phenomena showing changes of emission properties.
- Sketch a model for multiple-state magnetosphere.
- Illustrations for changes as result of switching between different magnetospheric states.

WHAT IS CHANGING?

- The phenomena:
 - 'ON' and 'OFF' emission (Kramer et al. 2006); correlation between pulse shape and the spin-down rate (Lyne et al 2010); nulling of 3 discrete timescales (Kerr et al. 2014)...
 - changes in emission mode \rightarrow changes in subpulse drift rates \rightarrow changes in profile properties (e.g., B0031-07, Smits et al. 2005)

THE NEED FOR MORE STATES

- Discrete variations in these emission properties imply:
 - multiple emission 'states' in the magnetospheres;
 - different pulsars have different sets of allowed states;
 - a pulsar behaves as if a 'normal' pulsar in each state.
- Let's give it more 'states':
 - multiple magnetospheric emission states
 (y) to switch into, and
 - each defined by unique E = E(y);
 - switches between different states can occur abruptly or steadily.

THE NEED FOR MORE STATES

- Discrete variations in these emission properties imply:
 - multiple emission 'states' in the magnetospheres;
 - different pulsars have different sets of allowed states;
 - a pulsar behaves as if a 'normal' pulsar in each state.
- Let's give it more 'states':
 - multiple magnetospheric emission states
 (y) to switch into, and
 - each defined by unique E = E(y);
 - switches between different states can occur abruptly or steadily.

OBSERVING EFFECTS

- Apparent 'relative' subpulse drift: $\omega_{\rm R}(y) = m\omega_{\rm dr}(y) \omega_{\rm V}$
- For $\omega_{\rm V} \neq 0$ or $\omega_{\rm V} = 0$:
 - path through the polar region and duration of stay in the region are different.
 - profile displacement and broadening.

ILLUSTRATION: SIMPLE CASE

• A sudden switch in the magnetosphere, as reflected by a change in the subpulse drift rate, causes the profile characteristics to change.

Emission spot	Peaks at $\psi = 0^{\circ}$ (blue)	
State	$\omega_{\rm V} = 0$	$\omega_{\rm V} \neq 0$
Pulse-width	27°	35°
Peak phase	00	0º

Emission spot	Peaks at $\psi = -23^{\circ}$ (brown)	
State	drift =0°	drift =50°
Pulse-width	35°	<u>39</u> °
Peak phase	-23°	-26°

CASE STUDY: B0919+06

- Switching in *y* from 0 to 0.42 results in (i) a shift in the profile peak by ~4°; and (ii) changes in the profile shape.
- Limitations of the model:
 - shifted profile shape indicate other mechanisms involved;
 - assume dipolar field structures.

CONCLUSIONS

Things we don't understand... yet

- Cyclical switching:
 - observations show recurring switching, or, in our language:

 $y_1 \rightarrow y_3 \rightarrow y_5 \rightarrow y_1 \dots$

- can do it (simulationally), but don't know why it should (physically).
- Pulsars that switch:
 - traditional models make no distinction between pulsars with single and multiple states.
 - two groups of pulsars differ only in the switch rate: 'stable' corresponds to switching occurring too infrequently to have been observed.
- Local vs global switching:
 - implies whole magnetosphere switches simultaneously (through E).
 - e,g., synchronized changes in radio and γ -ray emission properties?

CONCLUSIONS

Things we don't understand... yet

- Cyclical switching:
 - observations show recurring switching, or, in our language:

 $y_1 \rightarrow y_3 \rightarrow y_5 \rightarrow y_1 \dots$

- can do it (simulationally), but don't know why it should (physically).
- Pulsars that switch:
 - traditional models make no distinction between pulsars with single and multiple states.
 - two groups of pulsars differ only in the switch rate: 'stable' corresponds to switching occurring too infrequently to have been observed.
- Local vs global switching:
 - implies whole magnetosphere switches simultaneously (through E).
 - e,g., synchronized changes in radio and γ -ray emission properties?

CONCLUSIONS

Things we don't understand... yet

- Cyclical switching:
 - observations show recurring switching, or, in our language:

 $y_1 \rightarrow y_3 \rightarrow y_5 \rightarrow y_1 \dots$

- can do it (simulationally), but don't know why it should (physically).
- Pulsars that switch:
 - traditional models make no distinction between pulsars with single and multiple states.
 - two groups of pulsars differ only in the switch rate: 'stable' corresponds to switching occurring too infrequently to have been observed.
- Local vs global switching:
 - implies whole magnetosphere switches simultaneously (through E).
 - e,g., synchronized changes in radio and γ -ray emission properties?

REFERENCES

- Clemens & Rosen, 2004, *ApJ*, **609**, 340
- Demorest, et al., 2013 *ApJ* **762**, 94
- Goldreich & Julian, 1969 *ApJ* **157**, 869
- Kramer, et al., 2006 *Science* **312**, 549
- Lyne, et al., 2010 *Science* **329**, 408
- Melrose & Yuen, 2014 *MNRAS* **437**, 262
- Rankin, et al., 2006 *MNRAS* **370**, 673
- Smits, et al., 2005, *A&A*, **440**, 683
- Yuen & Melrose, 2017, *MNRAS*, **469**, 2049

Thank you.