

International Centre for Radio Astronomy Research

How ULXs heat the surrounding gas

Roberto Soria

ICRAR-Curtin University (Perth) & NAOC (Beijing)

Jifeng Liu, Albert Kong, James Miller-Jones Christian Motch, Manfred Pakull, Ryan Urquhart

日神学院大学

University of Chinese Academy of Sciences

Government of Western Australia Department of the Premier and Cabinet Office of Science

1

1. Collimated jets (radio synchrotron emission)

2. ULX bubbles (photo-ionized and shock-ionized)

3. Massive outflows (supersoft spectra)

Observations still inconclusive

Evidence of jets in some sources but not in others Often difficult to prove super-Edd accretion

3

Possible origin of synchrotron radio emission

- i) steady jet [unresolved, flat spectrum]
- ii) flaring jet, discrete ejecta [size <~ 0.1", steep spectrum]
- iii) internal shocks (re-acceleration) [size ~ 1"-10", steep sp.]
- iv) hot spots, lobes, bubble = jet/ISM interaction [size ~ 1"-10", steep spectrum]

Three main unknown quantities: L_R / L_X , L_R / P_J , $P_J / (mdot c^2)$

Radio emission from flaring ULX jets

 $L_R \sim 1 \times 10^{34} \text{ erg/s}$ $P_J \sim 2 \times 10^{39} \text{ erg/s}$ $L_X \sim 4 \times 10^{39} \text{ erg/s}$

Steep radio spectrum

Flaring jet in Holmberg II X-1 (Cseh et al 2014,2015)

Holmberg II X-1 (Cseh et al 2014) Radio + Hell 4686

Photo-ionized bubbles

Optical lines: HeII 4686, [O III], [O I], Hα

Radio emission = jets (optically-thin synchrotron)

P_{jet} ~ a few 10³⁹ erg/s inferred from the radio emission

(Grise' et al. 2012, Soria et al 2006, Kaaret et al 2003)

diameter ~ 270 pc

Jet-inflated bubble S26 microquasar in NGC7793

Pakull, Soria & Motch (2010) Soria et al (2010)

X-ray & radio hot spots

 $P_J \sim 10^{40} \text{ erg/s} > (\text{apparent}) L_X L_{5GHz}$ (bubble) $\sim 10^{35} \text{ erg/s}$

ATCA 5.5 GHz

Shock-ionized bubble Age ~ 300,000 yrs, v ~ 270 km/s Ηα [O III] 5007

S26 microquasar in NGC7793

HST close-up view of the southern lobe $H\alpha$ filter

Radio hot spot

X-ray hot spot

APRIM 2017 – How ULXs heat the surrounding gas

Jet-inflated bubbles

Optical images + radio contours

(Miller-Jones et al, in prep)

P_J ~ a few 10³⁹ erg/s L_{5GHz} (bubble) ~ 10³⁵ erg/s

NGC 5585 X-1

4

NGC 5585 X-1

ULX + shock-ionized optical bubble + radio synchrotron bubble L_{5GHz} (bubble) ~ 10³⁵ erg/s (Soria, Miller-Jones, Ryan, et al., in prep.) NGC 300 ESO 2.2m

NGC 300 - S9

A-ray, Πα and radio detection L_{5GHz} (jet) ~ 10³⁴ erg/s (Urquhart, Soria, et al 2017 in prep)

HII region

9.0 GHz

ATCA

APRIM 2017 – How ULXs heat the surrounding gas

Holmberg IX X-1 Subaru image: [OIII]=green, Ha=red, V-band = blue

size ~ 300 x 470 pc MH9/10 ΒH E MH1

APRIM 2017 – How ULXs heat the surrounding gas

Shock-ionized bubble

No radio bubble No evidence of jets

(Grise' et al 2011)

X-ray signatures of winds from ULXs

ICRAR

APRIM 2017 – How ULXs heat the surrounding gas

X-ray signatures of winds from ULXs

(Pinto et al 2017)

21

Flux (photon

X-ray signatures of winds from ULXs

Emission lines from slow-moving gas v ~ 0.01—0.1 c

Absorption lines from fast-moving gas v ~ 0.1—0.2 c

ULXs heat the surrounding gas with radiation, jets and winds

Jet power inferred from ULX bubbles P_{iet} ~ 1^E39—1^E40 erg/s

Wind properties inferred from X-ray spectra Softer spectra = denser wind

ULXs = ideal test for super-critical accretion and BH feedback

Significant contribution to cosmic re-ionization?