

The analysis of QPOs and time lag in ULXs with XMM-Newton

Speaker: Zi-Jian LI

Jin-Lu Qu, Shu Zhang, Li Chen lizijian@ihep.ac.cn

2017/07/04

ULX

- Luminosity > $3 \times 10^{39} \text{ erg/s}$
- Outside of the centers of their host galaxies
- Models:
 - intermediate-mass black hole (IMBH)
 - StBH with super-Eddington accretion rates
 - Galactic XRBs beaming relativistic jets

Outline

- Background
- Data Reduction and Analysis
- Results
- Discussion
- Conclusions

Background

Belloni, 2010, AIPCP, 1248, 107

Background

• QPO (quasi-periodic oscillations)

Dewangan et al, 2006, ApJL, 637, L21

- QPOs in XRB
- Also observed in ULXs
- Used to determine the mass, state

Pasham et al, 2014, Natur, 513, 74

Background

• Time lag

De Marco et al, 2013, MNRAS, 436, 3782

Data Reduction

- More than 70 observations of ULXs by XMM-Newton, about 20 ULXs
- Only 5 ULXs show intrinsic variability (QPOs)
- Duration > 20 ks
- Data from EPIC pn and mos
- Energy: 0.3-10 keV

Data Reduction

Sources and Observations								
Source Name	Observation ID	R.A.	Decl.	Radius	Duration (s)	Start Date		
IC342 X-1	0693850601	03 ^h 45 ^m 55 ^s 50	+68d 04' 54.2"	32	59873	2012-08-11 20:06:44		
M82 X-1	0206080101 0657800101 0657801901 0657802101 0657802301	09 ^h 55 ^m 49 § 91	+69d 40' 44."4	18	104353 26657 28219 22843 23914	2004 Apr 21 21:36:32 2011 Mar 18 16:31:57 2011 Apr 29 13:16:06 2011 Sep 24 05:09:12 2011 Nov 21 00:49:21		
NGC 5408 X-1	0302900101 0500750101 0653380201 0653380301 0653380401 0653380501	14 ^h 03 ^m 19 [§] 62	-41d 22' 58."7	32	132251 115694 128913 130882 121019 126367	2006 Jan 13 18:41:00 2008 Jan 13 19:05:27 2010 Jul 17 03:12:59 2010 Jul 19 03:05:13 2011 Jan 26 16:08:59 2011 Jan 28 15:49:01		
NGC 6946 X-1	0691570101	20 ^h 35 ^m 00 ^s .63	+60d 11' 29."3	12	119301	2012 Oct 21 17:50:58		
Ho IX X-1	0200980101	09 ^h 57 ^m 53 ^s 20	+69d 03' 49."8	32	119166	2004 Sep 26 06:55:52		
M82 X-2	0112290201	09 ^h 55 ^m 49 ^s .91	+69d 40' 44."4	18	30558	2001 May 06 09:13:18		

Note. Table 1 shows all the observations used in this work. The R.A. and decl. indicate the exact position of the sources used in selecting the source region.

Data Analysis

3. PDS:

$$P_j = \frac{2}{N_{tot.ph}} |a_j|^2 \qquad (j = 0, 1, 2, ..., \frac{N}{2})$$

Leahy et al, 1983, ApJ, 266, 160

- Leahy normalization, with the Poisson noise level being 2 (a constant)
- a narrow Lorentzian for the QPO feature

Data Analysis

- Asterisks indicate negative values (soft lag) •
- Crosses indicate positive values (hard lag). •

Cui et al, 1997, ApJ, 484, 383

Results

• Analysed all the observations

• QPO:

- 5 ULX show QPOs
- Frequency range from
 0.008 0.6 Hz
- consistent with previous reports
- Time lag:
 - All soft lag

Sources and QPOs								
Source Name	Frequency	FWHM	Model	Energy Range				
IC342 X-1	0.6326	0.0764	1	0.3–10.0 keV				
M82 X-1	0.1139	0.0258	1	0.3–10.0 keV				
NGC 5408 X-1	0.0177	0.0182	1	0.3–10.0 keV				
NGC 6946 X-1	0.00825	0.00161	2	0.3–10.0 keV				
Ho IX X-1	0.2168	0.0164	1	0.3–10.0 keV				
M82 X-2	0.0035	0.0015	1	0.3–10.0 keV				

1 represents power law + Lorentzian; 2 represents a broad Lorentzian + Lorentzian.

• Type of QPO:

- strong, fast variability confirms their compact nature
- energy spectrum suggests between different states as BHXRBs, especially the transition between the HSS and LHS in which type-C QPOs are often detected
- power spectral shape

- null hypothesis that the ULX QPO time lags are both hard and soft, and we simply happen to have only seen soft lags so far.
- the p-value is 0.1679

• Type of QPO:

- The phase lag at the Type-C fundamental QPO frequency depends significantly on source inclination.
 Van den Eijnden et al, 2017, MNRAS, 464, 2643
- The Type-C QPO soft lags are associated with highinclination sources.
- Type-C QPOs in BHXRBs have a larger amplitude for highinclination objects.

Motta et al. 2015, MNRAS, 447, 2059

• The soft time lag:

- Reverberation
- result of the reflection of X-rays by a geometrically thin and optically thick accretion disc
- lag represents the light travel time between the corona or the central object and the accretion disc.

$$t_1 \sim rac{r_{
m g}}{c} = rac{GM}{c^3}$$

- a linear correlation between time lag and frequency
- For these reasons, we suggest that the reverberation model reasonably explains the soft lag in ULXs.

Conclusions

- QPOs were found in five ULXs.
- ULX QPOs being Type-C QPO analogs.
- Time lags on the QPO frequency always be soft.
- The time lag versus QPO frequency is a linear relation.
- May be the reverberation.
- Intermediate-mass black holes.

Thanks!

If have any questions, please feel free to ask!