Highly magnetized super-Chandrasekhar white dwarfs and their astrophysical consequences

Banibrata Mukhopadhyay

Department of Physics

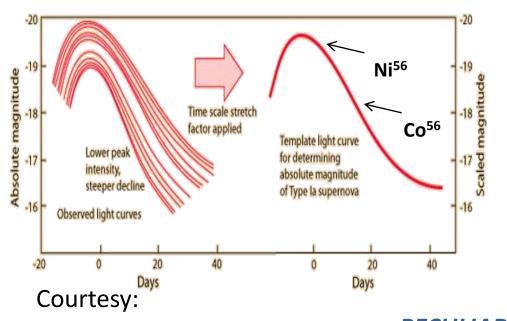
Indian Institute of Science

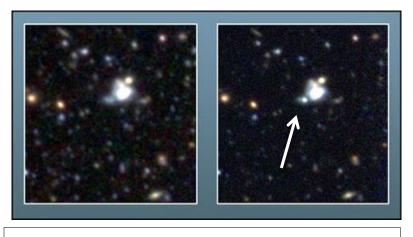
Collaborators:

Upasana Das (JILA, Colorado), Mukul Bhattacharya (Texas, Austin), Sathyawageeswar Subramanian (Cambridge), Tanayveer Singh Bhatia (IISc/NCU-Taiwan), Subroto Mukerjee (IISc), A. R. Rao (TIFR)

APRIM2017: July 3-7, 2017, Taipei, Taiwan

The talk is based on the following papers


- M. Bhattacharya, MUKHOPADHYAY, S. Mukerjee, JCAP (press), 2017
- > MUKHOPADHYAY, A. R. Rao, JCAP, 05, 007, 2016
- > S. Subramanian, MUKHOPADHYAY, MNRAS, 454, 752, 2015
- ➤ U. Das, MUKHOPADHYAY, IJMPD, 24, 1544026, 2015
- ➤ U. Das, MUKHOPADHYAY, JCAP, 05, 045, 2015b
- ➤ U. Das, MUKHOPADHYAY, JCAP, 05, 015, 2015a
- ➤ U. Das, MUKHOPADHYAY, Phys. Rev. D, 91, 028302, 2015c
- ➤ U. Das, MUKHOPADHYAY, JCAP, 06, 050, 2014a
- ➤ U. Das, MUKHOPADHYAY, MPLA, 29, 1450035, 2014b
- M. V. Vishal, MUKHOPADHYAY, Phys. Rev. C, 89, 065804, 2014
- > U. Das, MUKHOPADHYAY, Phys. Rev. Lett., 110, 071102, 2013a
- ➤ U. Das, MUKHOPADHYAY, A. R. Rao, ApJLett., 767, 14, 2013
- ➤ U. Das, MUKHOPADHYAY, IJMPD, 22, 1342004, 2013b
- ➤ U. Das, MUKHOPADHYAY, Phys. Rev. D, 86, 041001, 2012a
- ➤ U. Das, MUKHOPADHYAY, IJMPD, 21, 1242001, 2012b
- > A. Kundu, MUKHOPADHYAY, MPLA, 27, 1250084, 2012


Flow-Chart of Evolution of our Idea

- ☐ Since last 5 years or so, we have initiated exploring highly magnetized super-Chandrasekhar white dwarfs (B-WDs), explaining peculiar type Ia supernovae: Over-luminous
- ☐ Brings super-Chandrasekhar white dwarfs in lime-light
- □ Approach: (1) Spherical symmetric Newtonian model with constant/fluctuating magnetic fields → deformation effects speculated (2) Spherical symmetric general relativistic model with realistic varying magnetic field (3) Model capturing self-consistent departure from spherical symmetry by general relativistic magnetohydrodynamic (GRMHD) analyses: Result was already speculated in second paper
- ☐ Also modified Einstein's gravity (Starobinsky model) was explored to unify under- and over-luminous Ia supernovae

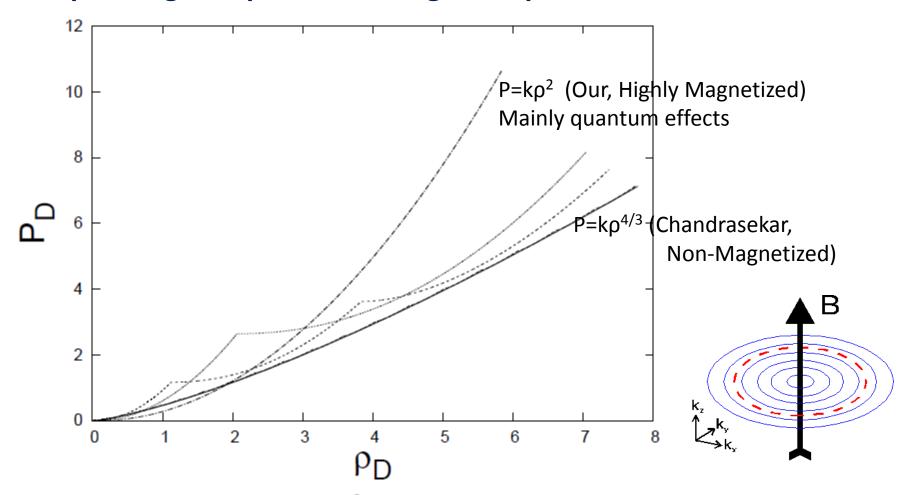
MOTIVATION OF INTRODUCING THIS NEW FIELD

TYPE IA SUPERNOVAE

Champagne Supernova - SN 2003fg

Georgia State University

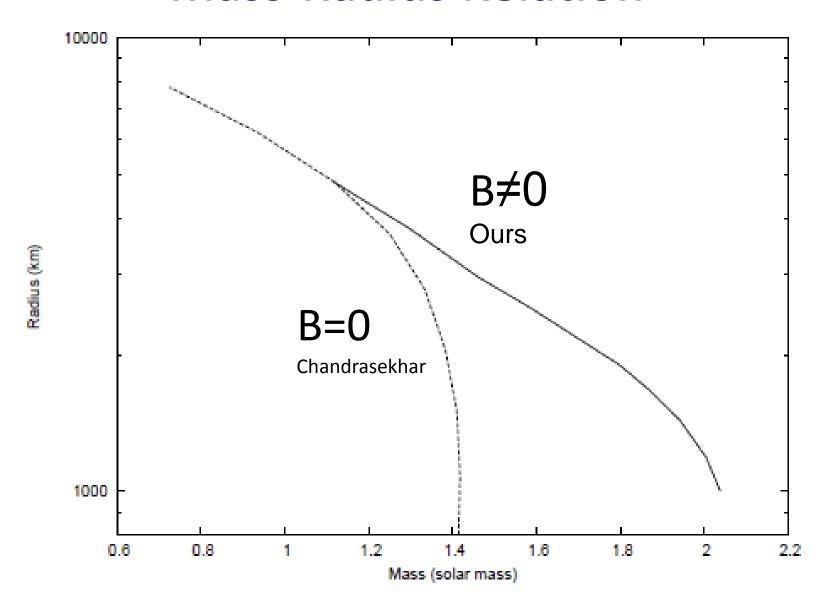
PECULIARITIES


Not touched upon here

Over-luminous, very high Ni mass $\gtrsim 1.3 M_{\odot}$, violates luminosity-stretch relation, very low ejecta velocity

SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg - seem to suggest super-Chandrasekhar-mass white dwarfs (2.1 - 2.8 M_{\odot}) as their most likely progenitors (Hicken et al. 2007, Howell et al. 2006, Scalzo et al. 2010).

Under-luminous, very low Ni mass $\sim 0.1 M_{\odot}$


SN 1991bg, SN 1997cn, SN 1998de, SN 1999by, SN 2005bl (Filippenko et al. 1992, Mazzali et al. 1997, Taubenberger et al. 2008) – suggest sub-Chandrasekhar explosion Simplest exploration: Constant/fluctuating magnetic field throughout for spherical white dwarfs \rightarrow ideal case helping to understand in the spirit of Chandrasekhar's work \rightarrow fluctuating length scale is similar to corresponding Compton wavelength \rightarrow quantum mechanical effects

density in units of 2×10^9 gm/cc pressure in units of 2.668×10^{27} erg/cc

Das, BM, PRD 2012, PRL 2013

Mass-Radius Relation

Das, BM, PRD 2012, PRL 2013; Das, BM, Rao, ApJL 2013

Obtaining new limit: spirit of Chandrasekhar

$$\frac{1}{\rho}\frac{d}{dr}\left(P+\frac{B^2}{8\pi}\right)=F_g+\frac{\vec{B}\cdot\nabla\vec{B}}{4\pi\rho},\qquad \frac{dM}{dr}=4\pi r^2\rho$$

$$M\propto K^{3/2}\rho_c^{\frac{3-n}{2n}},\qquad R\propto K^{1/2}\rho_c^{\frac{1-n}{2n}} \qquad \mathsf{P}=\mathsf{K}\;\rho^\mathsf{T}$$

For extremely high density regime

$$K = K_m \propto B_D^{-1} \propto \rho_c^{-2/3}$$

Mass is independent of ρ_c and radius becomes zero

Ours

Chandrasekhar's

 Γ =2 and hence n=1

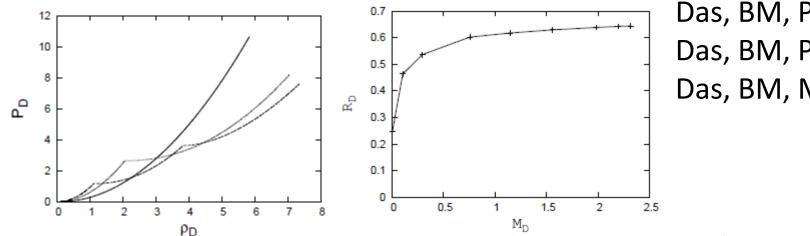
 Γ =4/3 and hence n=3

$$M = \left(\frac{hc}{2G}\right)^{3/2} \frac{1}{(\mu_e m_H)^2} \approx \frac{10.312}{\mu_e^2} M_\odot, \qquad \qquad M_{\rm Ch} = \frac{\sqrt{6}}{32\pi} \left(\frac{hc}{G}\right)^{3/2} \left(\frac{2}{\mu_e}\right)^2 \frac{\xi_1^2 |\theta'(\xi_1)|}{m_{\rm H}^2}$$

For μ_e =2 (carbon-oxygen white dwarf)

$$M \approx 2.58 M_{\odot}$$
.

 $1.44M_{\odot}$


Ideal versus Non-Ideal cases

Limiting mass M=2.58M_☉ with B, ρ → very high,

R → very small

Of course ideal result in the spirit of Chandrasekhar-limit

- For B<5x10¹⁵G and $\rho \sim 10^{10}$ g/cc, M=2.44M_o, R~650km
- For B=0 (Chandrasekhar), $\rho \sim 10^{10}$ g/cc, M=1.39M_o, R~1000km
- Worries of inverse β-decay, pycnonuclear fusion and general relativity related instabilities do not stand

Das, BM, PRD 2012 Das, BM, PRL 2013 Das, BM, MPLA 2014

P in units of $2.667x10^{27}$ erg/cc, ρ in units of $2x10^9$ g/cc M in units of M_{\odot} , R in units of 1000 km

Most self-consistent solutions with varying magnetic field without spherical approximation in general relativity

- ➤ The anisotropic effect due to a strong magnetic field may cause the shape of the white dwarfs to deviate from spherical symmetry. The problem would then consist of at least two independent variables instead of the single radial coordinate.
- In order to self-consistently take into account this departure from spherical symmetry, we have constructed equilibrium models of strongly magnetized, static, white dwarfs using the publicly available General Relativistic Magnetohydrodynamic (GRMHD) numerical code XNS (Bucciantini & Del Zanna A&A 2011, Pili et al. MNRAS 2014) www.arcetri.astro.it/science/ahead/XNS/.
- > XNS is a well tested code, so far only used to compute axisymmetric equilibrium configurations of strongly magnetized and polytropic neutron stars. We have applied the code for obtaining equilibrium configurations of strongly magnetized white dwarfs, with appropriate modifications, for the first time in the literature to the best of our knowledge.

$\Omega_c(rad/s)$	$M(M_{\odot})$	$r_e(km)$	$\Omega_{eq}(rad/s)$	$B_{max}(10^{14}G)$	KE/GE	ME/GE	r_p/r_e
0.003	1.878	1869	0.0002	3.0921	1.5×10^{-9}	0.134	1.038
8.112	1.918	1922	0.458	3.1016	0.011	0.135	0.982
18.252	2.097	2118	0.843	3.1407	0.054	0.137	0.816
28.392	2.478	2454	0.988	3.2098	0.121	0.143	0.617

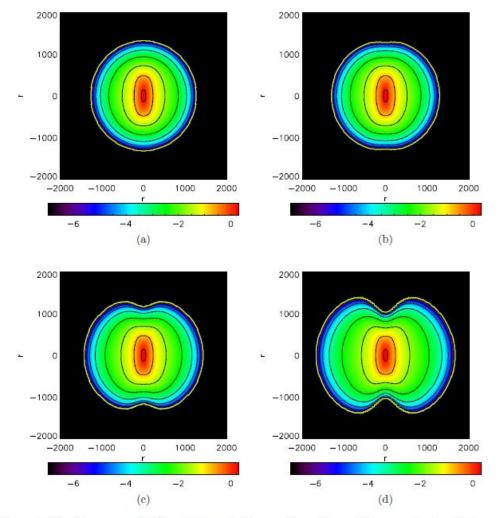


Figure 5.11: Sequence of differentially rotating configurations with a purely toroidal magnetic field, with changing Ω_c . The magnetic profile is fixed with m = 1.4 for the power law (4.4) and $B_{max} \approx 3.1 \times 10^{14}$ G. The panels are contour plots of $\log \left(\frac{\rho}{\rho_0}\right)$ corresponding to the Ω_c values (a) 0.003 rad/s (b) 8.112 rad/s (c) 18.252 rad/s (d) 28.392 rad/s. The corresponding physical quantities are listed in the table above. The radial co-ordinate r is in units of 1.48km.

Rotating Magnetized White Dwarfs

ME/GE, KE/GE are in accordance with Ostriker & Hartwick 1968

Density contours for purely toroidal field configuration with varying central angular velocity and $A^2 \sim 10^5$

$$A^{2}(\Omega_{c}-\Omega) = \frac{(\Omega-\omega)r^{2}\sin^{2}\theta e^{2(\beta-\nu)}}{1-(\Omega-\omega)^{2}r^{2}\sin^{2}\theta e^{2(\beta-\nu)}}$$

P=kρ^Γ, Γ≈4/3, $^{\text{V}}_{\text{m}} \ge 20$ $^{\text{B}}_{\text{max}} \sim 3x10^{14} \text{ G, B}_{\text{s}} \ge 10^{9} \text{ G}$

Polar hollow

 $M \ge 2.5 M_{\odot}$

 $\rho_0 = 10^{10} \text{ gm/cc}$

Subramanian, BM, MNRAS 2015

Ω_c	M	r_e	Ω_{eq}	B_{max}	KE/GE	ME/GE	r_p/r_e
2.028	1.502	1072	0.322	3.419	6×10^{-4}	0.057	0.818
12.168	1.568	1072	1.929	3.574	0.020	0.06	0.769
24.336	1.798	1072	3.854	4.119	0.074	0.071	0.636
32.448	2.054	1037	5.429	4.755	0.117	0.080	0.556

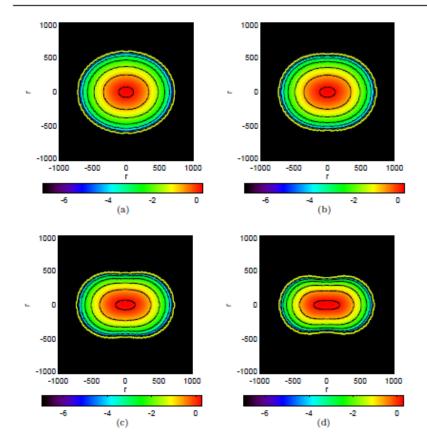
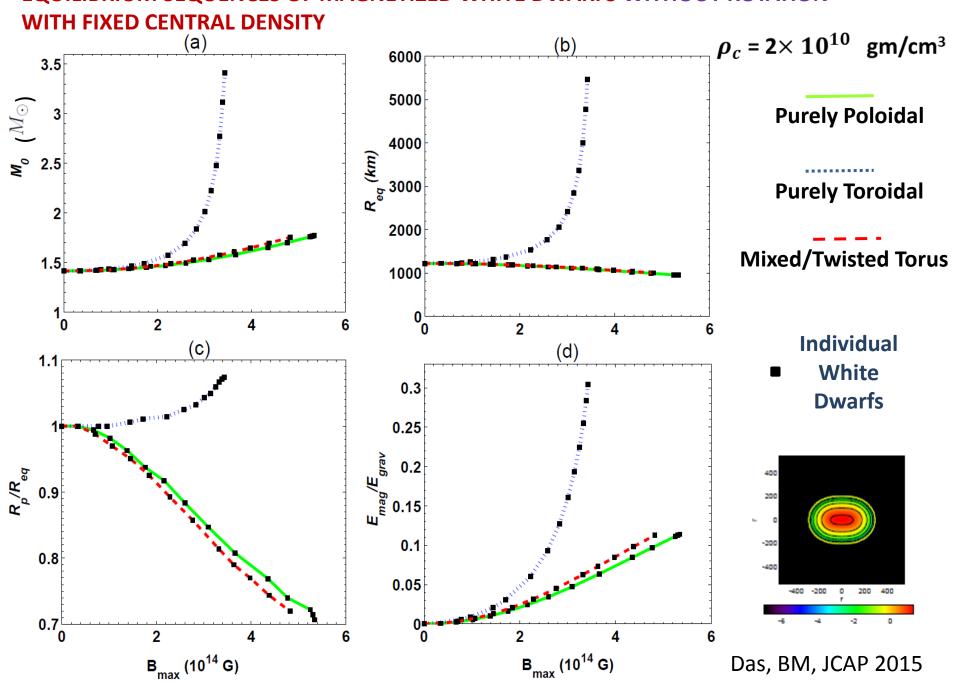


Figure 19. Sequence of differentially rotating configurations with a purely poloidal magnetic field with changing Ω_c and $B_{max} = 3.1$ fixed. The panels are contour plots of $\log\left(\frac{\rho}{\rho_0}\right)$ corresponding to the Ω_c values (a) 2.028, (b) 12.168, (c) 24.336, (d) 32.448. The corresponding physical quantities are listed in Table 9.

Rotating Magnetized White Dwarfs

ME/GE, KE/GE are in accordance with Ostriker & Hartwick 1968

Density contours for purely poloidal field configuration with varying central angular velocity


P=kρ^Γ, Γ≈4/3, $^{V}_{m}≥20$ B_{max}~3x10¹⁴ G, B_s≥10⁹ G

 $M \ge 2 M_{\odot}$

 $\rho_0 = 10^{10} \text{ gm/cc}$

Subramanian, BM, MNRAS 2015

EQUILIBRIUM SEQUENCES OF MAGNETIZED WHITE DWARFS WITHOUT ROTATION

Plausible origin of strong field: Eventually would produce highly super-Chandrasekhar B-WD

Growth: mass of the white dwarf Increases due to accretion \rightarrow gravitational power increases over degeneracy pressure \rightarrow star contracts \rightarrow any initial seed magnetic field (B) increases as "B π r²" is conserved

B=0

B=0

B=0

B=0

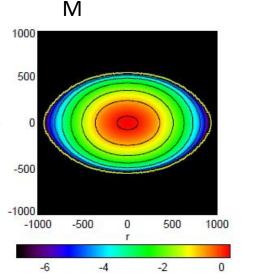
B=0

B=0

B = 0

B = 0

B = 0


B = 0

B = 0

Magnetostatic equilibrium: once B increases, total outward force further increases balancing gravitational force

Repetition of above cycle

Das, BM, Rao, APJL 2013; Subramanian, BM, MNRAS 2015

Other aspects/implications

- Luminosity very small → lower-left corner in H-R diagram
- Can explain SGRs/AXPs without invoking very strong fields, as required for neutron star based model
- Explaining white dwarf pulsars, e.g GCRT J1745
 -3009, AR Scorpii: as the seed of B-WD
- Candidates for gravitational wave (GW) search

Modeling SGR/AXP by B-WDs Shortcoming of existing models

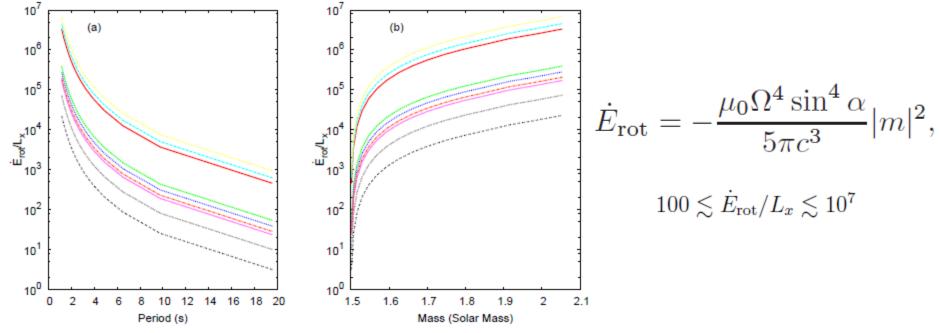
- Although very popular without proper alternatives, there are several shortcomings in magnetar model
- No observational evidence is for strongly magnetized neutron stars, as strong as required for magnetar model
- Fermi observations are inconsistent with high energy gamma-ray emissions in magnetars
- Inferred upper limit of B_s , e.g. for SGR 0418+5729, is quite smaller than field required to explain observed X-ray luminosity
- Hence, high magnetic dipole moment is not mandatory
- Weakly magnetized white dwarf based model (C-WDs: Paczynski, Usov, Rueda, Malheiro, Ruffini) is challenged by observed short spin periods and low UV-luminosities

Modeling compact stars as dipole

Assuming white dwarfs behaving as rotating magnetic dipoles: originally proposed by Paczynski, Usov in 1990s; later used by Malheiro, Rueda, Ruffini

Rate of energy loss

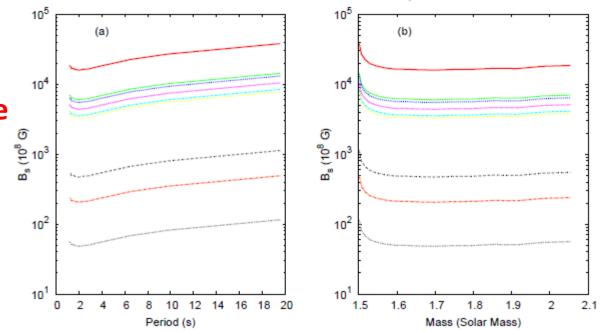
Dipole nature of magnetic field


$$\dot{E}_{\rm rot} = -\frac{\mu_0 \Omega^4 \sin^4 \alpha}{5\pi c^3} |m|^2,$$

$$B = \frac{\mu_0 |m|}{2\pi R^3},$$

$$I\Omega\dot{\Omega} = \dot{E}_{\rm rot},$$

$$B_s = \sqrt{\frac{5c^3 I P \dot{P}}{4\pi^2 R^6 \sin^2 \alpha}} G$$


Neutron star based model cannot explain SGR/AXP as rotationally powered pulsar unless $B_s \sim 10^{15} G$

correspond to 1E 1547-54, 1E 1048-59, SGR 1806-20, SGR 1900+14, SGR 0526-66, SGR 1822-1606, 1E 1841-045, SGR 0418+5729 and 1E 2259+586. For other details, see Table 1.

Rotational energy change is several orders of magnitude higher than observed X-ray luminosity

BM, Rao, JCAP 2016

Explaining SGRs/AXPs as $100 \lesssim \dot{E}_{\rm rot}/L_x \lesssim 10^7$ BM, Rao, JCAP 2016

$$100 \le \dot{E}_{\rm rot}/L_x \le 10^7$$

Rotationally Powered B-WDs \rightarrow No problem with UV luminosity cutoff

AXPs/SGRs	P	\dot{P}	L_x	α	$L_{UV\min}$	$L_{UV\min}$
	(s)	(10^{-11})	$(10^{35} {\rm ergs \ s^{-1}})$	(degree)	$(ergs s^{-1})$	$({\rm ergs~s^{-1}})$
					B-WD	C-WD
1E 1547-54	2.07	2.32	0.031	5 - 15	5.7×10^{28}	4.8×10^{29}
1E 1048-59	6.45	2.7	0.054	5 - 15	3.5×10^{26}	9.2×10^{29}
1E 1841-045	11.78	4.15	2.2	15	1.6×10^{28}	1.7×10^{30}
1E 2259+586	6.98	0.048	0.19	2 - 3	3.4×10^{26}	1.5×10^{29}
SGR 1806-20	7.56	54.9	1.5	15	3.4×10^{26}	3.5×10^{30}
SGR 1900+14	5.17	7.78	1.8	15	8.6×10^{28}	1.3×10^{30}
SGR 0526-66	8.05	6.5	2.1	15	6.4×10^{27}	1.7×10^{30}
SGR 0418+5729	9.08	5×10^{-4}	6.2×10^{-4}	1 - 5	3×10^{28}	1.8×10^{29}
SGR 1822-1606	8.44	9.1×10^{-3}	4×10^{-3}	1 - 5	3.4×10^{26}	8×10^{28}

- More sources to be observed by AstroSat's wide band spectroscopic capabilities with cyclotron resonance energy $E = 11.6 (B/10^{12}G) \text{ keV}$ in the spectrum \rightarrow confirming surface field strength
- Also other features: wide band spectral shape (like tail/second peak) can be examined in the context of beamed emission from the pole of a white dwarf, X-ray luminosity of SGRs/AXPs ~ 10³⁶ erg/sec

Continuous Gravity Wave Signal from B-WDs

Signal emitted by a tri-axial compact star rotating around a principle axis of inertia is characterized by the amplitude

$$h_{+}(t) = h_{0} \left(\frac{1 + \cos^{2} \iota}{2}\right) \cos \Phi(t); \qquad h_{\times}(t) = h_{0} \cos \iota \sin \Phi(t),$$

$$h_{0} = \frac{4\pi^{2} G}{c^{4}} \frac{I_{zz} \epsilon f^{2}}{d}$$
 Abbott et al. 2007 Ellipticity

For a B-WD of R=1000km, $\stackrel{\downarrow}{\epsilon}$ ~ 10⁻⁶, P=1 sec, at 100pc h_0 ~ 5x10⁻²⁵ \rightarrow LISA

Now being ambitious

For a B-WD of R=700km (realistic lower limit \rightarrow poloidally dominated fields), $\epsilon \sim 10^{-4}$, P=0.2 sec, h₀ \sim 7x10⁻²³ \rightarrow even LIGO can detect in principle

AR Scorpii to be a seed of B-WD

- > White dwarf/cool star binary emitting from X-ray to radio
- > Pulsing in brightness on a period 1.97 min
- ➤ Maximum luminosity L ~ 6.3 x 10³² erg/s
- ➤ Mean Luminosity L ~ 1.7 x 10³² erg/s
- \triangleright Mass is 0.8-1.29 M_{\odot}
- > Spin-down power: $L_v = 4\pi^2 I P_{dot}/P^3$
- \triangleright For a typical neutron star L_v ~10²⁸ erg/s
- > For white dwarfs with radius 2200-7000km $L_v \sim 1.5 \times 10^{32} 10^{33} \text{ erg/s}$
- Mean luminosity excess over stellar contribution $\sim 1.3 \times 10^{32} \text{ erg/s} \rightarrow L_v \text{ is sufficient to explain this for a white dwarf but not for a neutron star$
- ✓ Suggesting AR Sco primarily a spin-powered white dwarf pulsar: Marsh et al., 2016, Nature, 537, 374

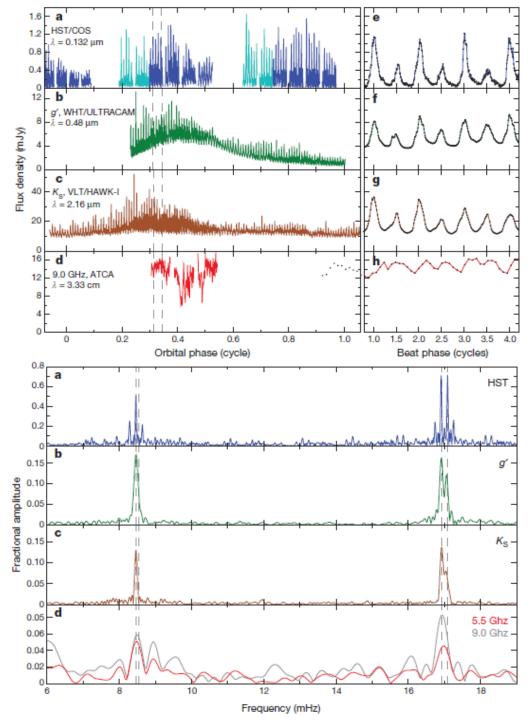


Figure 2 | Ultraviolet, optical, infrared and radio fluxes of AR Sco. a-d, High-speed measurements of the ultraviolet (a), optical (b), infrared (c) and radio fluxes (d) of AR Sco plotted against the orbital phase. e-h, An expanded view of sections of similar orbital phases (marked by dashed grey lines in a-d), is plotted against the beat pulsation phase. Black dots mark individual measurements. None of the four sets of data were taken simultaneously in time. The different colours in a indicate that the data were acquired in different orbital cycles.

First time a white dwarf is found with radio and far-infrared emissions

Figure 3 | Fourier amplitudes of the ultraviolet, optical, infrared and radio fluxes of AR Sco versus temporal frequency. a-d, Amplitude spectra corresponding to Fig. 2a-d. All bands show signals with a fundamental period of about 1.97 min (8.46 mHz) and its second harmonic. The signals have two components, clearest in the harmonic, which we identify as the spin frequency $\nu_{\rm S}$ and beat frequency $\nu_{\rm B} = \nu_{\rm S} - \nu_{\rm O}$, where ν_0 is the orbital frequency. The pairs of grey dashed lines mark the positions of the beat (left) and spin (right) frequencies and their second harmonics. The beat component is the stronger of the two and defines the dominant 1.97-min pulsation period; the spin period is 1.95 min.

Possible Evolution of AR Sco to B-WD

- ▶ Perhaps, initially it was accreting → R decreases,
 B increases (flux freezing) → suddenly rotates fast due to conservation of angular momentum (releasing stress due to sudden decrease of moment of inertia) → AR Sco → accretion is inhibited → P increases → luminous
- > After 10⁷ yr, B decays and P increases and radiation stops
- ➤ By gravitational wave and angular momentum loss, binary shrinks, accretion starts again → whole cycle repeats
- ➤ Repeating cycles will have lower and lower P → ending up as a fast spinning B-WD (SGR/AXP) → Astrosat/LAXPC may detect corresponding electron cyclotron absorption line

Summary and Conclusions

- > Highly magnetized stable white dwarfs are possible with varieties of application
- ➤ New, generic, mass limit of white dwarfs seems to be around 2.6M_☉
- ➤ Once the limiting mass is approached, the white dwarfs explode exhibiting over-luminous, peculiar type la supernovae: inferred exploding mass 2.3 2.8 M_☉
- > Suggesting second standard candle: established for certain magnetized white dwarfs
- > They serve as a very good candidate for SGRs/AXPs with less fields
- > LAXPC/AstroSat would help in determining their fields and hard X-ray tail
- > In gravitational wave (GW) search they should be considered
- > AR Sco be a proto B-WD: on accretion, seed, apparently dormant field, could be enhanced due to flux-freezing and leading to a B-WD
- Luminosties of highly magnetized white dwarfs could be as low as 10⁻¹³ L_☉ → much below observation limit → perhaps lower left corner of H-R diagram