

Resolving the Geometry of the Innermost Relativistic Jets in AGN Using Core Shift Measurements

Juan-Carlos Algaba

M. Nakamura, K. Asada & S. S. Lee

APRIM 2017, July 3rd - 7th, Taipei

- Jets have typically been considered to have a conical geometry (e.g. Blandford&Znajek77, Blandford&Payne82,...)
- BUT:
 - Inner parabolic, outer conical jet models match SED (Ghisellini85, Potter&Cotter13)
 - Indications of more active collimation at higher frequencies (Pushkarev+12)

- Jets have typicall (e.g. Blandford&z
- BUT:
 - Indications of jet geometry transitions

- Jets have typically been considered to have a conical geometry (e.g. Blandford&Znajek77, Blandford&Payne82,...)
- BUT:
 - Indications of jet geometry transitions

M87

NGC 6251

- Jets have typically been considered to have a conical geometry (e.g. Blandford&Znajek77, Blandford&Payne82,...)
- BUT:
 - Indications of jet geometry transitions
- QUESTION:
 - Are these isolated particular cases?
 - Is that an AGN paradigm? (just unresolved for sources further away)
- Possibility to answer using the properties of the core

- Dependence of the τ=1 surface with freq. (Blandford & Konigl '79, Konigl'81)
- Core position moves with frequency

$$- r_{core}(\tau_{v,ssa}=1) \propto v^{-\alpha}$$

- Dependence of the τ=1 surface with freq. (Blandford & Konigl '79, Konigl'81)
- Core position moves with frequency

$$- r_{core}(\tau_{v,ssa} = 1) \propto v^{-\alpha}$$

- If the core is the throat of the divergent jet (Blandford&Konigl79)...
 - Properties of the core = properties of the upstream jet at rcore.
 - We can probe physical properties of the upstream unresolved jet!

- Possibility to answer using the properties of the core
- Example: M87

- Possibility to answer using the properties of the core
- Example: M87

- Plethora of data in the recent years
 - Lobanov98 (7 sources)
 - Sokolovsky+11 (20 sources)
 - Rioja+05,Jung+15,Algaba11,O'Sullivan+12,...
 - Important sources (Hada+11, Cho+17,...)
 - Pushkarev+12 MOJAVE IX (163 sources)
- Can start an statistical analysis

- Methodology
 - Obtaining core shift values
 - Obtaining core sizes at different frequencies
- Caveats
 - Small number of data
 - Core-jet blending
 - Time variability
- Advantages
 - Access regions otherwise unresolved
 - Large sample, statistical analysis

TABLE 1 VLBI SURVEYS USED IN THIS WORK.

Freq. (GHz)	Instrument	Epoch	References ¹
(1)	(2)	(3)	(4)
1.6	$11-16 \times VLBI^2$	1990-1991	P95,TH95
2.3	VLBA	1998-2003	P12
5.0	VSOP	1997-2002	S04,D08
8.6	VLBA	1998-2003	P12
15	VLBA	1994-2003	L05
22	$6 \times VLBI^2$	1993	M96
86	GMVA	2001-2002	L08

Algaba+16

- Results
 - Obtained core size & core distance
 - for at least 4 freqs in 56 objects
 - Fitted for $r \sim R^{\varepsilon}$.
 - ε=1 conical
 - ε=0.5 parabolic
 - ε=0 cylindrical
 - Median <ε>=0.85
- In agreement with Pushkarev+12
- Jet collimation break, quasi-parabolic to conical transition?

Algaba+16

- Global view in terms of rg.
- Jet starts neither conical nor parabolical
- Intermediate semi-parabolic
- If jet break exists, at ~10⁵⁻⁶ r_g
 - Mixture of geometries?
 - Proper fit unreliable
- Consistent with GRMHD numerical calculations

- Global view in terms of rg.
 - Half opening angle starts very large near SMBH
 - Conical expansion is unlikely near SGI
 - Assuming *Γθ_j*~0.2 (Clausen-Brown+13) we get *Γ* consistent with observations

- Global view in terms of *r*_g.
 - Increase of Tb?

Conclusions

- Upstream unresolved jet geometry can be studied by probing AGN cores plus core shift information
- Inner jet shape is semi-parabolic (in contrast with conical on deca-pc scales)
- Indications of jet geometry break, SGI?
- Conical jet paradigm in AGN to be re-examined

Thanks