Super-resolution Imaging of Jet Base and Core of M87 at 10-100 Rs Scale with Sparse Modeling

Fumie Tazaki (National Astronomical Observatory of Japan)

Collaborators: K. Hada, M. Honma (NAOJ), K. Akiyama (MIT), S. Ikeda (ISM), K. Kuramochi (U of Tokyo/NAOJ)

Sparse Modeling

We have developed "sparse modeling" imaging technique of the radio interferometry to get a snapshot of black hole shadow with Event Horizon Telescope (EHT).

Honma+2014, Ikeda+2016, Akiyama+2017bc, Kuramochi+2017 (in prep.)

mm/sub-mm VLBI with ALMA (2017 April ~) angular resolution: ~20 μ as (~1mm/9000km)

Purpose of Our Study

The first application of new imaging technique to "real" observational data with non-EHT VLBI, targeting AGN jet base.

The Very Long Baseline Array (VLBA) angular resolution: ~ 70 μ as (~3mm/8600km)

Credit: NAOJ/AND You Inc.

Interferometry Imaging

* Image is obtained with 2D Fourier transformation of observed complex visibility.

$$I_{\nu}(x,y) = \iint S_{\nu}(u,v)e^{-2\pi i(ux+vy)}dudv$$

* Complex visibilities are sampled in UV (spatial frequency: baseline vectors seen from the target source) plane.

- * Sampled complex visibilities are imperfect.
 - → "Ill-posed problem"

Conventional Technique (CLEAN)

- 1. Make model components with point sources.
- 2. Convolve with synthesized beam.

New Technique (Sparse Modeling)

1. Make a smooth model image directly, which reproduces complex visibilities.

Sparse Modeling Technique

Sparsity of Image:

Small number of pixels have effective information.

Most pixels have zero value.

 \rightarrow L1-norm regularization

Most differences between two adjacent pixel values are zero.
Total Squared-Variation (TSV) regularizations

Smooth image

TSV

Minimizing equation

 $cost = ||S - AI||_{2}^{2} + \lambda_{1}||I||_{1} + \lambda_{TSV} \sum_{i,j} (|I_{i+1,j} - I_{i,j}|^{2} + |I_{i,j+1} - I_{i,j}|^{2})$ chi-squared L1-norm

M87 Observation

M87

- Suitable target for jet base study
- One of the closest powerful radio jet
- D = 17 Mpc
- $M_{BH} = (3-6) \times 10^9 M_{sun}$
- 1 mas ~ 0.08 pc ~ 140 R_s

Toward revealing the mechanism of collimation and acceleration of jets

● 43 GHz: VLBA observation in Apr. 2010 (Hada+2011)

86 GHz: VLBA + GBT observation in Feb. 2014 (Hada+2016)

Imaging Results (43 GHz)

- Successfully reconstruct image of 43 GHz jet
- Clear counter-jet structure
- Continuous double-ridge structure from the core to ~ 1 mas

Imaging Results (86 GHz)

- Successfully reconstruct images of 86 GHz jet
- Extremely narrow ridges
- Discontinuity of ridge structure?

Jet Collimation Profile

Peak to peak Profile

Apparent Distance from Core

Peak to pea

ñê.

Resolution Improvement

Sparse modeling image achieves several times higher resolution than CLEAN image.

Get multi-wavelength core information with EHT.

Future Prospects

With better quality (higher SNR) data

Jet ridge width and profile measurement.

Connection (or disconnection) between core and jet base.

• With 230 GHz data by EHT

Core spectrum

 \rightarrow magnetic field strength of core

With monitoring data Time variation of dip structure in the jet base.

Sparse modeling technique expands jet study!

Summary

- Successfully reconstruct sparse modeling images of M87 jet base.
- Sparse modeling images are more highly resolved than CLEAN images, which enables to measure the double ridge structure in the jet base several times closer to the core.
- Core size is directly measured with images.
- Core and jet physics can be investigated with sparse modeling in the future.

Credit: NAOJ/AND You Inc.