The view of HI gas size-mass relation in semianalytic models of galaxy formation

Fu Jian (富坚)

Shanghai Astronomical Observatory

fujian@shao.ac.cn

2017-07-05, Taipei

APRIM 2017

Size-mass relation of galaxies

One of the most important scale relations of galaxy

Guo et al. 2013

Size-mass relation HI gas in galaxies

Galaxies in the Simulated Universe

Semi-analytic models L-Galaxies, GALFORM

Describe the physical processes of baryonic matter based on dark matter simulation ouputs

Hydrodynamic Simulations

• EAGLE, Illustris, Horizon-AGN

Simulation combining both dark matter and baryonic matter

Radial profiles in SAMs & Hydro

Galaxy data and properties vs galaxy structure and image

Millennium and Millennium II Simulation

- Millennium Simulation: Springel et al. 2005
- Millennium II Simulation: Boylan-Kolchin et al. 2009
- The mass resolution of MS-II is 125 larger than MS: use to study dwarf galaxies and small galaxies at high z

	Millennium I (MS)	Millennium II (MS-II)
Particle number	2160 ³	
Particle Mass	$8.6 imes10^8 M_{\odot} h^{-1}$	$6.8 imes$ 10 $^6~M_{\odot}h^{-1}$
Box size	500 <i>h</i> ⁻¹ Mpc	100 <i>h</i> ⁻¹ Mpc
Output snapshots	64 snapshots Between z=0 and 127	68 snapshots Between z=0 and 127
Minimum halo mass	$1.7 imes10^{10}M_{\odot}h^{-1}$	$1.4 imes 10^8 M_{\odot} h^{-1}$

L-Galaxies Semi-analytic models

The radial resolved disk in SAMs

Concentric rings in galaxy disks to trace the disk formation

 $\Sigma_{*}(r), \Sigma_{gas}(r), \Sigma_{HI}(r), \Sigma_{H_{2}}(r), SFR(r)$

- Atomic-molecular gas transition
 - Prescription 1: Krumholz et al. 2009; Mckee & Krumholz 2010

$$f_{\rm H_2} \left(\Sigma_{\rm gas}, \left[{\rm Z/H} \right]_{\rm gas} \right)$$

Prescription 2: Pressure related H₂ fraction recipe (B&R 2006)

$$R_{\rm mol} \equiv M_{\rm H_2} / M_{\rm HI} = \left[P / P_0 \right]^{\alpha} \qquad P(r) = \frac{\pi}{2} G \Sigma_{\rm gas}(r) \left[\Sigma_{\rm gas}(r) + f_{\sigma}(r) \Sigma_{*}(r) \right]$$

- Prescription 3: Molecular-atomic-ionized gas (Gnedin& Kravtsov 2011)

$$f_{\rm HII}, f_{\rm H_2}, \Sigma_{\rm gas}, U_{\rm MW}, D_{\rm MW}$$

• H_2 proportional star formation law $\Sigma_{SFR} = \alpha \Sigma_{H_2}$

mass functions at z=0

HI size-mass relation in the model results

HI size-mass relation in the model results

Size-mass relation in different types of galaxies

BR H₂ prescription

The scatters of HI size-mass relation

Similar distribution of HI radial profiles

Similar distribution of outer disk HI gas

• The slope outer disk HI profiles represent the recent gas

Universal outer HI profiles in the unit of r/R1

$$\Sigma_{\rm HI} = \Sigma_0 \exp\left(-r / r_s\right)$$

$$\frac{r_s}{R1} = \frac{1}{\ln\left[\Sigma_0 / M_{\Box} \operatorname{pc}^{-2}\right]}$$

• The slope outer disk HI profiles represent the recent gas accretion in the disk center

- The universal HI profiles in the model results are from:
- 1. The exponential gas accretion
- 2. The inside-out disk formation
- Observations and SPH indicate HI accreted in the form of "rings"

Different definition of D_{HI}

The redshift evolution of HI size-mass relation

- The size of HI disk from 21cm emission flux
- The mass of HI absorbers at high redshift

Conclusions

- The size-mass relation of HI gas in galaxies are mainly caused by atomic-molecular gas conversion
- The small scatter of size-mass relation is the result of similar HI gas radial profile
- Universal outer disk HI exponential profiles are from recent similar gas accretion
- HI size-mass relation are nearly universal for different galaxies at different redshift

Thank you!