Time-domain Studies of M31 - Through the eye of Pan-STARRS 1 -

李 見 修 (Lee, Chien-Hsiu) Subaru Telescope, NAOJ APRIM, 2017 July 5th @ Taipei, Taiwan

- 1. Project overview: Lee et al. 2012, AJ, 143, 89
- 2. Cepheids: Kodric et al. 2013, AJ, 145, 106
- 3. Beat Cepheids: Lee et al. 2013, ApJ, 777, 35
- 4. Luminous blue variables: Lee et al. 2014, ApJ, 785, 11
- 5. Eclipsing binaries: Lee et al. 2014, ApJ, 797, 22
- 6. PS1 + HST = Cepheid IR PL: Kodric et al. 2015, ApJ, 799, 144
- ... and many more! All summarized in:

Lee, 2017, "Time-domain Studies of M31", Astronomical Review (open access)

M31 - the closest spiral galaxy

- 1. Complete view of M31 vs. partial/limited sight-lines of Milky Way
- 2. Simple geometry, all sources at same distance (770 kpc)
- 3. Variables and transients bright enough/to be resolved
- 4. Metal rich (compared to LMC and SMC)

1st wave: Distance indicator surveys

2nd wave: Microlensing surveys

3rd wave: ultra-wide CCD surveys

The PAndromeda Team

PAndromeda in a nutshell Scientific drivers

- Constraining the compact matter fraction in the M31/MW halos
 - Inventory of variables in M31, including Cepheids, binaries, long-period variables

Observation strategy

- Observed M31 in 2010-2012, from July to Dec.
- 2% of the 3yrs PS1 observing time (including overheads)
- 1.8m PS1 telescope, ~7 deg2 F.O.V., 0.25"/pixel
- r_{PS} and i_{PS} : up to 2 visits per night
- g_{PS} , z_{PS} , y_{PS} : sparse exposures in 3 yrs

Result 1: Microlensing

0

Lee et al. (2012)

Cepheids - Age distribution

Kodric et al. (2013)

Result 3: 298 Eclipsing binaries

Lee et al. 2014

Eclipsing binary - M31 as a distance anchor

• H₀ error budget (2.4%, Riess et al. 2016)

Term	Description	Prev.	R09	R11	This work	
		LMC	N4258	All 3	N4258	All 3
$\sigma_{\rm archor}$	Anchor distance, mean	5%	3%	1.3%	2.6%	1.3%
$\sigma^{*}_{archorPL}$	Mean of $P-L$ in anchor	2.5%	1.5%	0.8%	1.2%	0.7%
$\sigma_{\rm hostPL}/\sqrt{n}$	Mean of $P-L$ values in SN Ia hosts	1.5%	1.5%	0.6%	0.4%	0.4%
σ_{SS}/\sqrt{n}	Mean of SN Ia calibrators	2.5%	2.5%	1.9%	1.2%	1.2%
σ_{m-s}	SN Ia m 5 relation	1%	0.5%	0.5%	0.4%	0.4%
Rose	Cophoid roddening & colors, archer-to-hosts	4.5%	0.3%	1.4%	0%	0.3%
σ_{Z}	Cepheid metallicity, anchor-to-hosts	3%	1.1%	1.0%	0.0%	0.5%
$\sigma_{\rm Pb}$	$P-L$ slope, $\Lambda \log P$, anchor-to-hosts	4%	0.5%	0.6%	0.2%	0.5%
OWPPC2	WFPC2 CTE, long-short	3%	N/A	N/A	N/A	N/A
subtotal, $\sigma_{H_0}^b$		10%	4.7%	2.9%	3.3%°	2.2%
Analysis Systematics		N/A	1.3%	1.0%	1.2%	1.0%
Total, σ_{H_0}		10%	4.8%	3.3%	3.5%	2.4%

3 Anchors:

- MW Cepheids
- LMC
- NGC4258
- M31?

Riess et al. 2016

Making data public!

The only way to realize the full scientific benefit of our observation is to share the data with our competition. –Bohdan Paczynskí

Andromeda Real-Time Inspection System (ARTIS)

1. Catalog & light curves from literature

2. Deep M31 Atlas: PHAT (1/4 M31 disk from **HST**), LGS (deep optical imaging from **KPNO**), ANDROIDS (optical+NIR from **CFHT**), etc.

3. Reprocessing archival data (INT/WFCAM 1999-2002, CFHT/MegaCAM 2004-2005, PS1 2010-2012), providing long-term *g*, *r*, *i* light curves **in a consistent manner**

4. Online query system of **difference imaging analysis light curves** at any given position

Online data-base (work in progress)

1. Query by catalog

0

2. Query by position

M31J004506.39+414141.5

12 14

2.4 2.4

14 10

Learn how to fish!!!

- a shameless advertisement

Time-Domain Studies of the Andromeda Galaxy

Author: Chien-Hsiu Lee

Expected publication: May 2018

AS IOP Astronomy

The American Astronomical Society (AAS) have partnered with IOP Publishing to create an exciting new collection of astronomy and astrophysics ebooks to further enhance the AAS mission: "to share humanity's scientific knowledge of the universe."

http://iopscience.iop.org/bookListInfo/aas-iop-astronomy