Effects of Dust Evolution on the CO and H₂ Abundances in Galaxies

Hiroyuki Hirashita

Nanase Harada, Li-Hsin Chen, Shohei Aoyama, Kuan-Chou Hou (ASIAA, Taiwan) Ken Nagamine, Ikkoh Shimizu (Osaka Univ., Japan)

Dust evolution is important to understand the evolution of H₂ and CO in galaxies.

Goal

Clarifying the effect of dust evolution on the H₂ and CO abundances (and also on the conversion factor).

2. Formulation

<u>D-Z relation</u>: Relation between dust-to-gas ratio and metallicity is calculated by considering

- Dust production by stars
- Shock destruction
- Accretion of gas-phase metals
- Coagulation (sticking)
- Shattering (disruption)

2. Formulation

<u>D-Z relation</u>: Relation between dust-to-gas ratio and metallicity is calculated by considering

- Dust production by stars
- Shock destruction
- Accretion of gas-phase metals
- Coagulation (sticking)
- Shattering (disruption)

Solved for small and large grains separately to preserve the information of grain size distribution: $dD(small)/dt = \Sigma(D/\tau_i)$ $dD(large)/dt = \Sigma(D/\tau_i)$ *i*: processes τ_i : time-scale ($\tau_i > 0$: increase; $\tau_i < 0$:decrease)

Formulation

<u>H₂ fraction (f_{H2})</u>: fraction of H in the form of H₂

- Formation: dust surface reaction (dependence on grain size included)
- Destruction: photodissociation (Habing intensity)
 (considering self-shielding + dust shielding)
 Obtain the equilibrium H₂ fraction

<u>CO fraction (x_{CO})</u>: number ratio of CO to H

Use the calculated data in Glover & Mac Low (2011), following the formulation by Feldman et al. (2012). - Formation: gas phase reaction - Destruction: photodissociation (considering selfshielding + dust shielding)

Formulation

<u>CO-to-H₂ conversion factor</u>: $X_{CO} = N_{H2}/W_{CO}$

- W_{CO} Given by radiation temperature ($T_{gas} = 10$ K), velocity dispersion (3 km/s) + calculated x_{CO}
- $N_{\rm H2}$ Calculated above (= $f_{\rm H2} N_{\rm H}/2$)

Effect of Dust Evolution on X_{CO}–Z

Efficiency of dust growth by accretion

Summary of the Results

- Reproduced the metallicity dependence of CO-to- H_2 conversion factor (X_{CO} -Z relation).
- Grain growth by accretion has a large impact of the $X_{CO}-Z$ relation.
- The other processes concerning the dust evolution have minor effects on the X_{CO} -Z relation.
- A cloud with $N_{\rm H2} \sim 10^{22} \,\mathrm{cm}^{-2}$ (typical column density of Galactic molecular clouds) is not fully molecular at <~ 0.1 Z_{\odot} and regulated strongly by the dust condensation efficiency in stellar ejecta.

4. Future: Numerical Simulation

 -10_{-10}

-5

x(kpc)

 -10_{-10}

x(kpc)

Chen, Hirashita, et al. (2017)

Implemented the above processes into the dust evolution simulation in Aoyama et al. (2017, P4-39)/Hou et al. (2017, S4-3-4).

 $log_{10}\sum_{mol}^{CO}(M_{\odot}pc^{-2}$

1.0

^{CO}(M_☉pc