Investigating the Dynamical Histories of Early-Type Galaxies

Li-Chin Yeh Institute of Computational and Modeling Sciences National Tsing Hua University Taiwan

Early-Type Galaxies

- Formed by Mergers ?
- * Dark Matter Profiles ?
- * Supermassive Black Holes (SMBH) ?
- * Core/Cusp Galaxies ?
- Binary Supermassive Black Holes (Binary SMBH) ?

Core/Cusp Galaxies

 Core Galaxies are Early-type Galaxies with flat central brightness profile, called "cores"
Cusp Galaxies are those without flat parts

Brightness Profile with a Core

Brightness Profile without a Core

Black-hole Mass vs Core Radius

The Equilibrium Modeling

- Searching an equilibrium that could fit observational data
- Schwarzschild Method
- An orbit-based method
- Tuning orbit weights to fit observations
- Only one black hole can be considered
- No information on dynamical evolution

Our Particle-Based Approach

Total Potential $\Phi(x, y, z, t)$

 For realistic n-body simulation, total potential is updated at each time step
Our method here:

$$\Phi(x, y, z, t) = U_G(x, y, z) + U_{BH}(x, y, z, t)$$

where U_G is the galactic potential

UBH is the potential from SMBH (fixed) or Binary SMBH (time-dependent)

Major Processes

 Step 1: Searching Best Inner Mass Model with one SMBH
Step 2: Searching Best Total Mass Model with one SMBH
Step 3: Consider Binary SMBH

* Step 4: Consider Axis-Symmetric Stellar Part

Stars' Initial Positions (10⁶ Particles)

where $r_{sb} = 0.202$ or 1.0 (2 values)

Stars' Initial Velocities (Anistropy Parameter)

The Inner Galactic Profile

$$\rho_{\rm g} = \rho_c \left(\frac{r}{r_{mb}}\right)^{-\gamma} \left\{ 1 + \left(\frac{r}{r_{mb}}\right)^{\alpha} \right\}^{\frac{\gamma - \beta}{\alpha}}$$

6 sets of α , β , γ (see next slide) where γ_{mb} is 0.202, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 (10 values)

Table of 6 Profiles

2 x 6 x10 Cases run for 10 dynamical times

The Total Galactic Profile

$$\rho(r) = \begin{cases} \rho_{\rm g}(r) & \text{if } r \leq m_d \\ cr^m & \text{if } r > m_d \end{cases}$$

where $m_d = 1.5, 2.0, 2.5$ power index m = -2.7, -.2.6, -2.5, -2.4, -2.3, -2.2, -2.1, -2.0, -1.9, -1.8

30 More Cases

Spherical + Axis-Symmetric ?

Velocity Configuration

Velocity Dispersion

Surface Brightness

Results

 Through numerical surveys of important parameters, a mass model with central cusp is obtained

The power index of central cusp is -1

 For stars, both the spherical part and the axis-symmetric part are necessary

Concluding Remarks

 The axis-symmetric part could be formed during the merging of two SMBHs

 Binary SMBH might have combined to be one SMBH by now, as our best model is the one with single SMBH