Searching for Pulsating Stars in the Field of Intermediate-Age Open Cluster NGC 2126

N. Chehlaeh ${ }^{1}$, D. Mkrtichian ${ }^{2}$, P. Lampens ${ }^{3}$, S. Komonjinda ${ }^{1}$, S.-L. Kim, A. Kusakin and L. Glazunova
${ }^{1}$ Department of Physics and Materials Science, Chiang Mai University
${ }^{2}$ National Astronomical Research Institute of Thailand
${ }^{3}$ Royal Observatory of Belgium

$$
\text { July 7, } 2017
$$

Overview

(1) Introduction

- Stellar clusters
- Pulsating stars in open clusters
(2) Theory
- Asteroseismology
- Pulsating Stars across the H-R diagram
(3) Object in the study
- NGC 2126
(4) Observations and data reduction
(5) Data analysis
- Color magnitude diagram
- Period analysis
(6) Results
(7) Conclusions
(8) Acknowledgments

Introduction

Stellar clusters provide a sample of stars having the same age, distance and initial composition. Allow us to determine their physical properties using theoretical isochrone fitting. (e.g. Tapia et al., 2010; Glushkova et al., 2013).

Figure 1: The CMD of three open clusters with the theoretical isochrone fitting (Credit: WEBDA database)

Introduction

Concept:

"Stellar clusters represent snapshots of the process of stellar evolution. They are frozen in time from a human perspective."

Introduction

- Cluster + pulsating stars: set of constraints on the solution (i.e. pulsation models), stringent tests of stellar structure and evolution.
- This combination provides a set of constrain which allow to find more accurate solutions and to study the characteristics of stars and clusters together

Model of a pulsating star University of Wisconsin)

Introduction

- Cluster + pulsating stars: set of constraints on the solution (i.e. pulsation models), stringent tests of stellar structure and evolution.
- This combination provides a set of constrain which allow to find more accurate solutions and to study the characteristics of stars and clusters together.

Figure 2: Model of a pulsating star (Credit: University of Wisconsin)

Asteroseismology

Figure 3: Low l-degree modes are penetrating close to core of the star (Cunha et al., 2007).

astero \Rightarrow star

seismos \Rightarrow oscillations
logos \Rightarrow discourse

The analysis of stellar oscillations enables the study of the stellar interior because different modes penetrate into different depths inside the star.

$$
\begin{equation*}
Y_{l}^{m}(\theta, \phi)=(-1)^{m} \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos \theta) \exp (i m \phi) \tag{1}
\end{equation*}
$$

Asteroseismology

Figure 3: Low l-degree modes are penetrating close to core of the star (Cunha et al., 2007).

$$
\begin{aligned}
& \text { astero } \Rightarrow \text { star } \\
& \text { seismos } \Rightarrow \text { oscillations } \\
& \text { logos } \Rightarrow \text { discourse }
\end{aligned}
$$

The analysis of stellar oscillations enables the study of the stellar interior because different modes penetrate into different depths inside the star.

Asteroseismology

Figure 3: Low l-degree modes are penetrating close to core of the star (Cunha et al., 2007).

$$
\begin{aligned}
& \text { astero } \Rightarrow \text { star } \\
& \text { seismos } \Rightarrow \text { oscillations } \\
& \text { logos } \Rightarrow \text { discourse }
\end{aligned}
$$

The analysis of stellar oscillations enables the study of the stellar interior because different modes penetrate into different depths inside the star.

Asteroseismology

Figure 3: Low l-degree modes are penetrating close to core of the star (Cunha et al., 2007).

$$
\begin{aligned}
& \text { astero } \Rightarrow \text { star } \\
& \text { seismos } \Rightarrow \text { oscillations } \\
& \text { logos } \Rightarrow \text { discourse }
\end{aligned}
$$

The analysis of stellar oscillations enables the study of the stellar interior because different modes penetrate into different depths inside the star.

$$
\begin{equation*}
Y_{l}^{m}(\theta, \phi)=(-1)^{m} \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos \theta) \exp (i m \phi) \tag{1}
\end{equation*}
$$

Pulsating Stars across the H-R diagram

Figure 4: Pulsating stars across the HR diagram (Aerts et al., 2010).

Distribution of the Variable Stars in Open Clusters

Figure 5: Distribution of the variable stars according to their distance from the centre (in cluster radii) in open clusters smaller than 60 arcmin in diameter (Zejda et al., 2012).

Why NGC $2126 ?$

- Open clusters with an age of 0.3-1 Gyr and a distance of 1-2 kpc are suitable for studying short-period pulsating stars, especially δ Scuti type stars (Frandsen and Arentoft, 1998).
- Faint open clusters aren't well investigated for the δ Scuti type pulsating stars.
- Gaspar et al. (2003) discovered multiperiodic δ Scuti pulsating stars, binary stars and one eclipsing binary with a pulsating component which was suspected to have a resonance of orbital to pulsations period makes this cluster interesting for a more detailed study about accurate resonances.

Why NGC $2126 ?$

- Open clusters with an age of 0.3-1 Gyr and a distance of 1-2 kpc are suitable for studying short-period pulsating stars, especially δ Scuti type stars (Frandsen and Arentoft, 1998).
- Faint open clusters aren't well investigated for the δ Scuti type pulsating stars.
- Gaspar et al. (2003) discovered multiperiodic δ Scuti pulsating stars, binary stars and one eclipsing binary with a pulsating component which was suspected to have a resonance of orbital to pulsations period makes this cluster interesting for a more detailed study about accurate resonances.

Why NGC $2126 ?$

- Open clusters with an age of 0.3-1 Gyr and a distance of 1-2 kpc are suitable for studying short-period pulsating stars, especially δ Scuti type stars (Frandsen and Arentoft, 1998).
- Faint open clusters aren't well investigated for the δ Scuti type pulsating stars.
- Gaspar et al. (2003) discovered multiperiodic δ Scuti pulsating stars, binary stars and one eclipsing binary with a pulsating component which was suspected to have a resonance of orbital to pulsations period makes this cluster interesting for a more detailed study about accurate resonances.

Observations

Figure 6: The 1-m telescope at Mount Lemmon Optical Astronomy Observatory, Arizona (LOAO)

Observations

Figure 7: The 2.4-m telescope at Thai National Observatory (TNO)

Observations

Figure 8: The $0.5-\mathrm{m}$ telescope at Thai National Observatory (TNO)

Observations and Data Reduction

- The CCD frame processing was performed using the standard routines of CCDPROC in the IRAF package (Stetson, 1987) and we measured differential magnitude of the stars.
- For the photometric calibrations, we observed standard stars in the open cluster M 67 (Landolt, 1973)

Observations and Data Reduction

- The CCD frame processing was performed using the standard routines of CCDPROC in the IRAF package (Stetson, 1987) and we measured differential magnitude of the stars.
- For the photometric calibrations, we observed standard stars in the open cluster M 67 (Landolt, 1973).

Figure 9: Digitized sky survey image of NGC 2126.

Data analysis: CMD

Figure 10: Color-magnitude diagram of the open cluster NGC 2126

- We fitted the theoretical isochrone to the data using the Padova isochrones library (Girardi et al., 2002).
- The best fit to the data by adopting: $Z=0.019$ (metallicity), $\log (t)=9.1 \pm 0.1$
- A reddening of $E(B-V)=0.27 \pm 0.01 \mathrm{mag}$
- Distance modulus: $(m-M)=10.80 \pm 0.05 \mathrm{mag}$

Period Analysis

- We performed a Discrete Fourier Transform (DFT) period analysis for all stars in the observed field of view showing any variability
- We used the algorithm Period04 (Lenz and Breger, 2005) in order to study the pulsation properties of the stars.
- In this procedure, we selected only peaks with signal-to-noise ratio (S/N) larger than 4 (Breger, 1993).
- From these period analyses, we distinguished in total eleven variable stars: three eclipsing binaries and eight pulsating variable stars. Two of them are new δ type pulsating stars according to their light variation behaviors and their position in the color-magnitude diagram (CMD).

Period Analysis

- We performed a Discrete Fourier Transform (DFT) period analysis for all stars in the observed field of view showing any variability
- We used the algorithm Period04 (Lenz and Breger, 2005) in order to study the pulsation properties of the stars.
- In this procedure, we selected only peaks with signal-to-noise ratio (S/N) larger than 4 (Breger, 1993).
- From these period analyses, we distinguished in total eleven variable stars: three eclipsing binaries and eight pulsating variable stars. Two of them are new δ type pulsating stars according to their light variation behaviors and their position in the color-magnitude diagram (CMD).

Period Analysis

- We performed a Discrete Fourier Transform (DFT) period analysis for all stars in the observed field of view showing any variability
- We used the algorithm Period04 (Lenz and Breger, 2005) in order to study the pulsation properties of the stars.
- In this procedure, we selected only peaks with signal-to-noise ratio (S / N) larger than 4 (Breger, 1993).
- From these period analyses, we distinguished in total eleven variable stars: three eclipsing binaries and eight pulsating variable stars. Two of them are new δ type pulsating stars according to their light variation behaviors and their position in the color-magnitude diagram (CMD)

Period Analysis

- We performed a Discrete Fourier Transform (DFT) period analysis for all stars in the observed field of view showing any variability
- We used the algorithm Period04 (Lenz and Breger, 2005) in order to study the pulsation properties of the stars.
- In this procedure, we selected only peaks with signal-to-noise ratio (S / N) larger than 4 (Breger, 1993).
- From these period analyses, we distinguished in total eleven variable stars: three eclipsing binaries and eight pulsating variable stars. Two of them are new δ type pulsating stars according to their light variation behaviors and their position in the color-magnitude diagram (CMD).

New Pulsating Star: δ Scuti N1

Table 1: Results of the nine-frequency fit to the V light curve new variable star N1.

f_{i}	frequency (f) $(\mathrm{c} / \mathrm{d})$	σ_{f} $(\mathrm{c} / \mathrm{d})$	amplitude (A) (mag)	σ_{A} (mag)	phase (ϕ) (rad)	σ_{ϕ} (rad)	S / N
f_{1}	13.597445	0.000002	0.0156	0.0002	0.562	0.002	35.31
f_{2}	17.173266	0.000008	0.0036	0.0002	0.714	0.010	8.24
f_{3}	4.009167	0.000013	0.0024	0.0002	0.450	0.015	4.54
$:$	$:$	$:$	$:$	$:$	\vdots	$:$	\vdots
f_{9}	21.827054	0.000018	0.0017	0.0002	0.881	0.021	4.74

New Pulsating Stars: δ Scuti N2

Table 2: Results of the six-frequency fit to the V light curve new variable star N2.

f_{i}	frequency (f) $(\mathrm{c} / \mathrm{d})$	σ_{f} $(\mathrm{c} / \mathrm{d})$	amplitude (A) (mag)	σ_{A} (mag)	phase (ϕ) (rad)	σ_{ϕ} (rad)	S / N
f_{1}	14.552467	0.000006	0.0037	0.0002	0.174	0.006	13.64
f_{2}	15.284740	0.000010	0.0021	0.0002	0.647	0.011	7.77
f_{3}	19.073477	0.000014	0.0014	0.0002	0.586	0.017	5.76
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
f_{6}	14.086533	0.000016	0.0012	0.0002	0.933	0.019	4.44

Results

Table 3: Summary of 11 new and known variable stars in NGC 2126

ID	Name	RA	Dec	V	B-V	Type
V1	V546 Aur	$06: 01: 44.15$	$+49: 56: 30.4$	13.76	0.68	γ Dor
V2	V547 Aur	$06: 01: 57.42$	$+49: 58: 55.0$	14.26	0.68	γ Dor
V3	V548 Aur	$06: 02: 05.27$	$+49: 49: 11.4$	15.15	0.72	δ Sct
V4	V549Aur	$06: 02: 21.33$	$+49: 52: 37.2$	15.75	1.01	EA
V5	V550 Aur	$06: 02: 26.43$	$+49: 51: 56.6$	12.81	0.67	δ Sct
V6	V551 Aur	$06: 02: 38.27$	$+49: 53: 04.7$	14.27	0.84	EA
ZV1	-	$06: 02: 33.07$	$+49: 42: 47.7$	13.05	0.70	δ Sct
ZV2	-	$06: 02: 21.77$	$+49: 52: 23.6$	13.33	0.67	Hybrid
ZV3	-	$06: 02: 20.11$	$+49: 48: 23.7$	15.40	0.84	EA
N1	-	$06: 02: 38.74$	$+49: 52: 45.1$	13.34	0.54	δ Sct
N2	-	$06: 02: 27.46$	$+49: 50: 27.5$	13.73	0.54	δ Sct

Conclusions

- We have estimated important physical parameters of the cluster with standard photometric methods.
- We have detected eleven variable stars in a field of the cluster. Eight are pulsating stars, three are eclipsing binaries, one of them is eclipsing binary with a pulsating component.

Table 4: The summary of variable stars in the open cluster NGC 2126

Variable Type	Number of star	ID
Short period variables	6	V3, V5, ZV1, ZV2,
		N1, N2
Long period variables	2	V1, V2
Algol type binary (EA)	2	ZV3, V3
Eclipsing with pulsating star	1	V6
Total	11	-

- Spectroscopic data for all variable stars are needed to study more detail about individual stars.

Acknowledgments

- D. Mkrtichian, P. Lampens and S. Komonjinda.
- Department of Physics and Materials Science, Chiang Mai University (CMU)
- Development and Promotion of Science and Technology Talents Project (DPST).
- The Royal Observatory of Belgium (ROB)
- The National Astronomical Research Institute of Thailand (NARIT)
- The International Astronomical Union (IAU)

Thank you

