Cepheid variables Stellar Pulsation and the Distance Scale

ANUPAM BHARDWAJ (Department of Physics & Astrophysics) (University of Delhi, India)

3-7 July, APRIM 2017, Taipei, Taiwan

Cepheid variables

- > Radially pulsating variables
- Classical or Type I Cepheids : Young, Pop I, massive, metal-rich stars
- > Type II Cepheids : Old, Pop II, low-mass and metal-poor stars

- Why are they important?
- Period-Luminosity relation
- Classical Cepheids are Primary distance indicators
- Stellar tracers of extinction, metallicity and structure of the host galaxy
- For understanding the theory of stellar pulsation and evolution

Light curve analysis

- To explore constraints for stellar pulsation models
- A quantitative comparison of theoretical and observed Cepheid light curves at multiple wavelengths in the Galaxy and Magellanic Clouds

Light curve analysis

- To explore constraints for stellar pulsation models
- A quantitative comparison of theoretical and observed Cepheid light curves at multiple wavelengths in the Galaxy and Magellanic Clouds

• Fourier decomposition and Principal component analysis of Cepheid light curves

Cepheid Light Curves

Bhardwaj et. al (2015)

Fourier analysis

• Fourier sine series is applied to periodic light curves -

Fourier parameters for k > 1 -

Theoretical light curves (Marconi et al. 2013)

- For a fixed chemical composition and mass-luminosity (M-L) levels from:
- Stellar evolutionary calculations Canonical M-L relations
- > Brighter luminosity levels by 0.25 dex Non-canonical M-L relations
- Explore wide range of temperatures Width of the Instability strip
- Each model represents a uniqe combination of X, Y, Z, M, L and T

Theoretical Fourier parameters

- Cepheid models in the LMC (Y=0.25, Z=0.008)
- Transformation of bolometric magnitudes to multiple bands
- Fourier parameters in I-band

Observations vs. theory

- OGLE I-band LMC Cepheids vs. Cepheid models with Z=0.008
- Canonical set of models display large offset with respect to observations in amplitude parameters

Mixing length parameter

- Accounting for variation in the convective efficiency by increasing mixing length parameter
- A decrease in amplitude parameters

- Shift in slope and zero-point of P-L relations -
- Increasing mixing length narrows the width of the instability strip

Cepheids in the LMC synoptic survey

- Large Magellanic Cloud Near-Infrared Synoptic Survey (LMCNISS) Macri et al., (2015)
- Time-series observations (average of 16 epochs) of the central region covering 18 sq. deg. :- 1417 OGLE-III Cepheids
- Calibrated Cepheid P-L relations using LMC distance = 18.493±0.048, *Pietrzynski et al.*, (2013)

FIG. 1.— Digitized Sky Survey image of the Large Magellanic Cloud showing the area covered by our CPAPIR observations (red outline), which amounts to 18 sq. deg.

Period-Wesenheit relations

$$W_{\lambda_1,\lambda_2} = m_{\lambda_1} - \left[\frac{A_{\lambda_1}}{E(m_{\lambda_2} - m_{\lambda_1})}\right] (m_{\lambda_2} - m_{\lambda_1})$$

• $\lambda_1 > \lambda_2$

- *m* apparent magnitude in a NIR band.
- Wesenheit functions *(Madore 1981)* are reddening independent.
- Term in square bracket is obtained using reddening law of *Cardelli et al. (1989)*.
- Wesenheit magnitudes :-

$$W_{J,H} = H - 1.63(J - H)$$

$$W_{H,K_s} = K_s - 1.92(H - K_s)$$
$$W_{J,K_s} = K_s - 0.63(J - K_s),$$

LMCNISS P-W relations

Distance to Local Group galaxies

(Non-) Linear P-L relations

- Miltiband Period Luminosity relations or *Leavitt Law*
- A statistical analysis of non-linearity in the Leavitt Law (Bhardwaj et al., 2016)

Cepheid based Hubble constant

- Global fit to Cepheid and Supernovae Ia data from SHOES project (Riess et al., 2011)
- The LMC W(H,VI) Wesenheit used as calibrator in SH0ES project is found to be non-linear around 18 days.
- Global slope is found to be consistent with the corresponding LMC relation at short periods, and significantly different to the long-period value.
- We do not find any significant difference in the slope of the global-fit solution using a linear or non-linear LMC PL relation as calibrator, but the linear version provides a two times better constraint on the slope and metallicity coefficient.
- <u>SHOES III (Riess et al. 2016)</u> used two slope model in the global-fit to account for the impact of non-linearities.

Type II Cepheids

- Cross match with optical OGLE-III catalog of variable stars
- 81 Type II Cepheids with JHKs observations
- Mean-magnitudes using the Template-fit to the Type II Cepheids in the LMCNISS
- BL Herculis, P < 4 days
- W Virginis, 4 < P < 20 days
- Peculiar W Virginis, 4 < P < 10 days
- RV Tauris, P > 20 days

Type II Cepheid distance scale

Estimates of the LMC Distance Modulus

Source	μ (mag)
T2C π	18.54 ± 0.11
RRL π	18.55 ± 0.10
T2C B-W	18.41 ± 0.09

• Comparison of Cepheid based distances with horizontal branch stars

Cluster	$\mu(J)$	$\mu(H)$	$\mu(K_s)$	μ_{M06}
NGC 1904	15.55 ± 0.09	15.40 ± 0.09	15.42 ± 0.10	15.57
NGC 2808	15.01 ± 0.09	15.27 ± 0.09	15.05 ± 0.11	14.90
NGC 5139	13.65 ± 0.08	13.77 ± 0.08	13.70 ± 0.11	13.62
NGC 5272	14.89 ± 0.07	15.01 ± 0.07	14.95 ± 0.07	15.10
NGC 5904	14.15 ± 0.12	14.22 ± 0.11	14.24 ± 0.11	14.37
NGC 5986	15.20 ± 0.06	15.03 ± 0.06	15.05 ± 0.07	15.11
NGC 6093	15.07 ± 0.07	15.17 ± 0.07	15.12 ± 0.07	15.04
NGC 6218	13.64 ± 0.08	13.68 ± 0.06	13.62 ± 0.08	13.45
NGC 6254	13.54 ± 0.08	13.58 ± 0.07	13.53 ± 0.08	13.23
NGC 6256	14.12 ± 0.10	14.24 ± 0.07	14.18 ± 0.08	14.57
NGC 6266	13.79 ± 0.08	13.93 ± 0.07	13.86 ± 0.09	14.19
NGC 6273	14.55 ± 0.07	14.73 ± 0.06	14.65 ± 0.07	14.71
NGC 6284	15.66 ± 0.08	15.85 ± 0.08	15.71 ± 0.10	15.93
NGC 6293	14.75 ± 0.09	15.04 ± 0.09	14.76 ± 0.13	14.76
NGC 6325	14.48 ± 0.07	14.57 ± 0.07	14.53 ± 0.07	14.51
NGC 6402	14.73 ± 0.07	14.95 ± 0.08	14.82 ± 0.09	14.86
NGC 6441	15.48 ± 0.07	15.59 ± 0.12	15.59 ± 0.11	15.60
NGC 6453	14.94 ± 0.07	14.98 ± 0.07	15.03 ± 0.07	14.93
NGC 6569	15.33 ± 0.13	15.06 ± 0.11	15.12 ± 0.12	15.11
NGC 6626	13.77 ± 0.10	13.77 ± 0.10	13.76 ± 0.10	13.74
NGC 6749	14.21 ± 0.07	14.51 ± 0.07	14.46 ± 0.08	14.51
NGC 6779	15.07 ± 0.08	15.22 ± 0.09	15.12 ± 0.12	15.08
NGC 7078	15.22 ± 0.07	15.30 ± 0.06	15.25 ± 0.06	15.13
NGC 7089	15.36 ± 0.06	15.43 ± 0.07	15.41 ± 0.07	15.33
HP 1	14.24 ± 0.07	14.34 ± 0.07	14.31 ± 0.07	14.36
Ter 1	13.56 ± 0.06	13.81 ± 0.06	13.97 ± 0.07	13.73

Type II Cepheid-based Distance Estimates for Galactic Globular Clusters

Summary

- Theoretical amplitudes in optical bands are systematically larger than the observed amplitudes over the entire period range except in the vicinity of 10 days.
- Large discrepancy in Fourier amplitude parameters with respect to observations for canonical set of Cepheid models with $M > 6M_0$ and T < 5400K at the short period (P < 10 days) end
- Discrepancy in amplitude parameters can be remedied with increase in mixing length parameter
- A combination of higher mixing length and non-canonical M-L relations may allow the best-fit with respect to observations
- Near-infrared observations of Classical and Type II Cepheids provide robust P-L relations for distance scale
- Non-linearity in Cepheid P-L relations does not have any significant impact on the extragalactic distance scale.

Thank you