The effect of radiation pressure on dust distribution inside HII regions

Shohei Ishiki (Hokkaido Univ.), Takashi Okamoto (Hokkaido Univ.), Akio K. Inoue (Osaka Sangyo Univ.)

From observational estimates (Paladini et al. 2012) Radiation pressure

From observational estimates (Paladini et al. 2012) Radiation pressure

Spatial variations of the grain size distribution

From observational estimates (Paladini et al. 2012) Radiation pressure

Spatial variations of the grain size distribution

Dust & gas

$$\frac{\partial}{\partial t} (\rho_d + \rho_g) v + \frac{\partial}{\partial x} (\rho_g + \rho_d) v^2 = F_g + F_d + (\rho_d + \rho_g) G - \frac{\partial}{\partial x} p$$

$$\frac{\partial}{\partial t} \rho_g v_g + \frac{\partial}{\partial x} \rho_g v_g^2 = F_{r,g} + \rho_g g + K_d (v_d - v_g) - \frac{\partial}{\partial x} p$$

$$\frac{\partial}{\partial t} \rho_d v_d + \frac{\partial}{\partial x} \rho_d v_d^2 = F_{r,d} + \rho_d g - K_d (v_d - v_g)$$
Dust drag force

We investigate the effect of radiation pressure on 1. spatial dust distribution - dust cavity size 2. spatial variations of the dust grain size distribution

inside HII regions by numerical simulations

Method & Model

Spherical symmetry

Star cluster or Single star

H, He, Graphite

2. Method

1D Radiation transfer

$$\frac{dI}{dx} = -\alpha I + j$$

Dust charge

Hydrodynamics + dust motion

AUSM+ Dust drag force Collisional drag force Coulomb drag force

2. Method

1D Radiation transfer Radiation intensity Re-emission $\frac{dI}{dx} = -\alpha I + j$ Absorption

Hydrodynamics + dust motion

Dust charge

AUSM+ Dust drag force Collisional drag force Coulomb drag force

Dust charge

i. Photoelectric charge e ii. Collisional charge e

2. Method

Dust Graphite size Case 1: dust cavity 0.1µm Case 2: spatial dust grain size distribution 0.1, 0.01 μ m; $n_{0.1}$: $n_{0.01} = 1:10^{2.5}$ Temperature Radiative equilibrium

2. Method Temperature of gas Heating Gas photoionization heating Cooling Recombination Collisional ionization Collisional excitation Bremsstrahlung inverse-Compton

Result

Spatial dust distribution
 dust cavity size

Cloud 0 density: $4.0 \times 10^5 \text{ cm}^{-3}$ radius: 1.2 pc distribution: constant Radiation source spectrum: BB $5.0 \times 10^{4} \text{ K}$ $T_{\rm BB}$: 0.1 μm

Dust:

Number density of hydrogen

Dust-to-gas mass ratio

Dust charge

Relative velocity between gas and dust

Number density of hydrogen

Dust-to-gas mass ratio

Dust charge

Relative velocity between gas and dust

	$\overline{n_{ m H}}~({ m cm^{-3}})$ inside ionzied region	r _i (pc) Ionize radius	<i>İ</i> v _{ion} (10 ⁴⁹ s ^{−1}) Ionized photon	r _d (pc) Dust cavity radius
Calculation	1319	0.71	6.2	0.15
Observational estimation (Inoue 2002)	1200 <u>+</u> 400	0.72	6.8 <u>+</u> 3.9	0.28±0.13

Consistent with observational estimation

2. Spatial variations of the grain size distribution

Cloud 1 density: 790 cm^{-3} radius: 17 pc BE distribution: Radiation source of Cloud 1: BB 3.9×10^4 K T_{BB} : $7.2 \times 10^{48} \text{ s}^{-1}$ $N_{\rm ion}$: Dust: 0.01 ,0.1 μm

Gas density

0.1µm dust mass density/ 0.01µm dust mass density

0.1µm dust mass density/ gas mass density

0

2

Large dust is preferentially removed

14

12

r [pc]

16

Why is the large dust removed?

0.1µm dust mass density/ 0.01µm dust mass density

Dust charge

0.1µm dust mass density/ 0.01µm dust mass density

Dust charge

Dust charge of large dust is small than that of small dust

Dust charge

Change the luminosity of the radiation source

Cloud density: 790 cm^{-3} radius: 17 pc distribution: BE Radiation source Cloud 1; BB $3.9 \times 10^4 \text{ K}$ $T_{\rm BB}$: $1.0 \times 10^{49} \,\mathrm{s}^{-1}$ N_{ion}: Radiation source Star cluster Cloud 2, 3: mass C2: $2.0 \times 10^{3} M_{\odot}$ $2.0 \times 10^{4} M_{\odot}$ mass C3: IMF: Salpeter

Gas density

0.1µm dust mass density/ 0.01µm dust mass density

Gas density

0.1µm dust mass density/ 0.01µm dust mass density

0.1µm dust mass density/ 0.01µm dust mass density

Dust charge

0.1µm dust mass density/ 0.01µm dust mass density

Dust charge

Strongest radiation source makes dust charge strongest

Summary

4. Summary

- Radiation pressure affects the dust distribution
- Dust cavity size is almost consistent with the observational estimation
- Large dust is preferentially removed
 - Dust charge of large dust is small
- Dust size distribution is less affected when the luminosity is large.

Result

Discussion

Discussion

Effect of sputtering

Negligible !

Discussion

The effect of differential velocity on cloud expansion

$v_{\text{expand}} \approx 10 \text{ km s}^{-1}$ $|v_{\text{g}} - v_{\text{d}}| \approx 0.5 \text{ km s}^{-1}$

Negligible !

Method Test calculation

