Understanding high-mass star formation through KaVA observations of water and methanol masers

Tomoya Hirota (NAOJ), Kee-Tae Kim (KASI), on behalf of KaVA SFRs sub-WG

KaVA large program (LP)

- KaVA: KVN and VERA Array
- Three LPs since 2015
 - AGN (Sohn and Kino)
 - Late-type stars (Cho and Imai)
 - SFR (K. T. Kim and Hirota)
- Allocation of ~200 hrs/yr
- Long-term program

KaVA SFRs LP

- Understanding high-mass star formation through KaVA observations of water and methanol masers
- VLBI monitoring/survey to reveal 3D velocity and spatial structures of 22GHz H₂O/44GHz CH₃OH maser lines in 87 high-mass YSOs (HM-YSOs)
 - Physical/dynamical properties of disk/jet/outflow
 - Evolution of disk/jet/outflow and maser chronology

Why HM-YSOs?

- Major impact on astronomy
 - Strong influence on formation and evolution of stars,

clusters, ISM, and galaxies

- But not well understood in contrast to low-mass YSOs
 - Initial condition?
 - Accretion process?
 - Feedback process?
 - Initial mass function?

Mass accretion/ejection in HM-YSOs

- Evidence of disk/outflow system with 10-10⁴ AU
 - But spatial resolution is insufficient even with ALMA
 - 3D velocity structure is unavailable (except full ALMA)
 - Need systematic VLBI survey

G35.20-0.74N (Sanchez-Monge et al. 2013)

Debate on evolutionary phase

- Need statistical studies
 - Evolution of jet/outflow?
 - Evolutionary phase of masers?

Reid (2007) vs Ellingsen (2007) Updated with slight modification but still controversial

Machida et al. (2008, but for low-mass YSO)

Our tracers

- Centimeter/millimeter maser lines
 - -22 GHz H₂O; high-velocity jet/outflow
 - -6.7 GHz CH₃OH; low-velocity outflow/disk
 - -44 GHz CH₃OH; low-velocity outflow

Unique capability of KaVA

- First VLBI image of 44 GHz methanol maser (Matsumoto et al. 2014)
 - Advantage to obtain both extended structures and compact components

THE ASTROPHYSICAL JOURNAL LETTERS, 789:L1 (6pp), 2014 July 1 © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/2041-8205/789/1/L1

THE FIRST VERY LONG BASELINE INTERFEROMETRY IMAGE OF A 44 GHz METHANOL MASER WITH THE KVN AND VERA ARRAY (KaVA)

Naoko Matsumoto¹, Tomoya Hirota^{1,2}, Koichiro Sugiyama³, Kee-Tae Kim⁴, Mikyoung Kim⁴, Do-Young Byun⁴, Taehyun Jung⁴, James O. Chibueze⁵, Mareki Honma^{1,2}, Osamu Kameya¹, Jongsoo Kim⁴, A-Ran Lyo⁴, Kazuhito Motogi³, Chungsik Oh⁴, Nagisa Shino², Kazuyoshi Sunada¹, Jaehan Bae^{4,6}, Hyunsoo Chung⁴, Moon-Hee Chung⁴, Se-Hyung Cho⁴, Myoung-Hee Han⁴, Seog-Tae Han⁴, Jung-Wook Hwang⁴, Do-Heung Je⁴, Takaaki Jike¹, Dong-Kyu Jung⁴, Jin-seung Jung⁴, Ji-hyun Kang⁴, Jiman Kang⁴, Yong-Woo Kang⁴, Yukitoshi Kan-ya¹, Noriyuki Kawaguchi^{1,2}, Bong Gyu Kim⁴, Jaeheon Kim⁴, Hyo Ryoung Kim⁴, Hyun-Goo Kim⁴, Hideyuki Kobayashi¹, Yusuke Kono¹, Tomoharu Kurayama^{1,7}, Changhoon Lee⁴, Jeong Ae Lee⁴, Jeewon Lee^{4,8}, Jung-Won Lee⁴, Sang Hyun Lee⁴, Sang-Sung Lee⁴, Young Chol Minh⁴, Atsushi Miyazaki⁴, Se-Jin Oh⁴, Tomoaki Oyama¹, Sun-youp Park⁴, Duk-Gyoo Roh⁴, Tetsuo Sasao^{1,4,9}, Satoko Sawada-Satoh¹, Katsunori M. Shibata^{1,2}, Bong Won Sohn⁴, Min-Gyu Song⁴, Yoshiaki Tamura¹, Kiyoaki Wajima¹⁰, Seog-Oh Wi⁴, Jae-Hwan Yeom⁴, and Young Joo Yun⁴

The first KaVA results

- First VLBI image of 44 GHz methanol maser (Matsumoto et al. 2014)
 - Advantage to obtain both extended structures and

Planned Observations

- VLBI survey/monitoring of sources; 87
 - Bright 22 GHz H₂O/44 GHz CH₃OH masers
 - Association of multiple masers, high velocity jets, ...
 - Statistics of HM-YSOs with uniform dataset
 - Possibly including multiple YSOs within FoV
- Follow-up projects

Annual parallax

6.7GHz methanol masers

Thermal continuum/lines

Large-scale structure

H₂O maser at 22 GHz

- Status for the first year (2016-2017)
 - Snap-shot imaging survey
 - 25 high-mass YSOs
 - Selected mainly from KVN single-dish survey (K.T. Kim et al.) but with no VLBI data

CH₃OH maser at 44 GHz

- Status for the first year (2016-2017)
 - First VLBI imaging survey
 - 18 high-mass YSOs
 - Selected from KVN singledish survey (K.T. Kim et al.)

Preliminary results of the first year survey (analyzed by Sugiyama)

G357.96

1000 ai

600

200

400

800

-4.4 -4.6

4.8

-5.4 -5.6

-5.8

-200

-5 -5.2

200

-200

-400

-600

-800

1000

Dec offset [mas]

Future and summary

- Timeline of KaVA SFRs LP
 - Early 2017 (1st yr); initial survey/snap-shot imaging
 - 2017 Nov.; interim review
 - Early 2018 (2nd yr); start of monitoring observations
- In parallel JVN (6.7 GHz), ALMA cycle 3, etc.
- SFRs LP will welcome new members at anytime!
- SFRs LP will welcome collaboration/new ideas with other instruments/theory!