Transit timing variation and transmission spectroscopy studies of transiting exoplanet with 0.7m class Thai telescopes

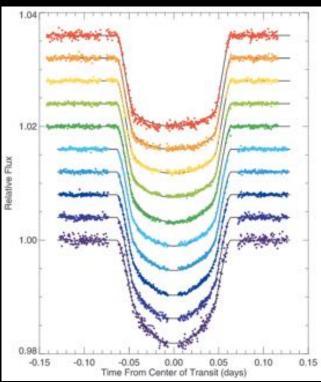
Supachai Awiphan

National Astronomical Research Institute of Thailand (NARIT), Thailand

in collaborated with

E. Kerins, S. Komonjinda, S. Pichadee, J. Morgan and N. Sanguansak

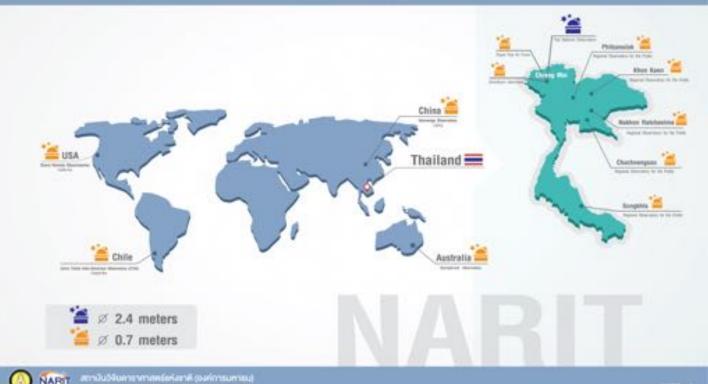

Transmission spectroscopy


Transit

• A periodic dip in the stellar light curve which occurs when the orbit of one of the planet passes in front of the star.

Transmission spectroscopy

- Chemical compositions of the atmosphere of a transiting exoplanet.
- Light from the host star passes through the planetary atmosphere, some of the light is absorbed by the atoms, molecules or grains present in the atmosphere.
- Planet bigger in some wavelengths.



HD 209458b light curves in 10 bandpasses (290-1030 nm) (Knutson et al. 2009)

NARIT's Network of optical telescopes

NARIT's Network of Optical Telescopes

Credit: NARIT

NARIT's Network of optical telescopes

2.4 m Thai National Telescope, Thailand

- Lat 18°34′25″ N
- Long 98°28′56" E
- Altitude 2457 m

• 0.5 m TRT-TNO, Thailand

- Lat 18°34′25″ N
- Long 98°28′56" E
- Altitude 2457 m

• 0.6 m PROMPT-8 telescope, Chile

- Lat 30°10′11″ S
- Long 70°48′23″ W
- Altitude 2201 m

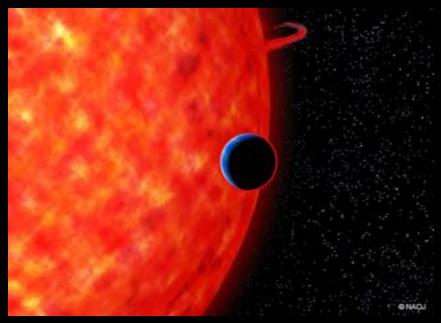
• 0.7 m TRT-GAO, China

- Lat 18°34′25″ N
- Long 98°28′56" E
- Altitude 2457 m

• 0.7 m Nakhon Ratchasima telescope, Thailand

- Lat 14°52′25" N
- Long 102°01′44" E
- Altitude 250 m

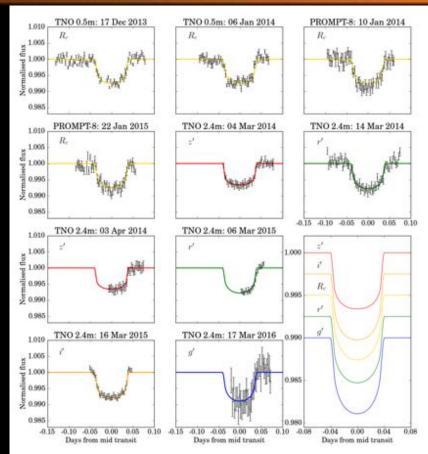
0.7 m Chachoengsao telescope, Thailand



- Lat 13°35′37″ N
- Long 101°15′22" E
- Altitude 10 m

GJ3470b: Hot Neptune-like exoplanet

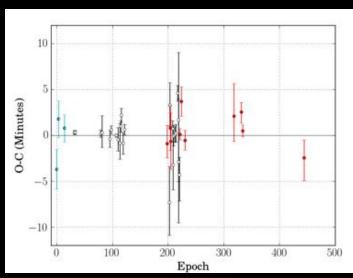
- The planet GJ3470b is a transiting hot Neptune-like exoplanet orbiting a nearby M-dwarf (V=12.3).
- The planet was originally seen in HARPS radial velocity data and then confirmed to be a transiting planet (Bonfils et al. 2012).
- The first sub-Jovian planet to exhibit Rayleigh scattering atmosphere (Nascimbeni et al. 2013).
- 10 nights photometric observations were conducted between 2013 and 2016
 - 2.4 m TNT with ULTRASPEC (4 nights)
 - 0.5 m TRT-TNO (2 nights)
 - PROMPT-8 telescope (2 nights)

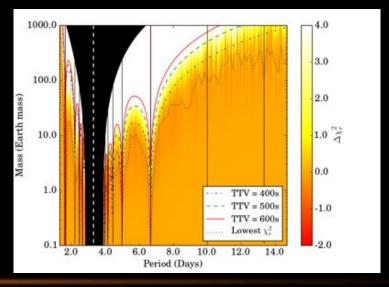

Credit: NAOJ

GJ3470b: Planetary parameters

- 4 minutes binned light curves with best fit model from TAP (Gazak et al. 2012) analysis
 - Filter R_c , z', i', r' and g'
- Using Radial-velocity semi-amplitude 13.4±1.2 ms⁻¹d^{1/3} from Demory et al. (2013)

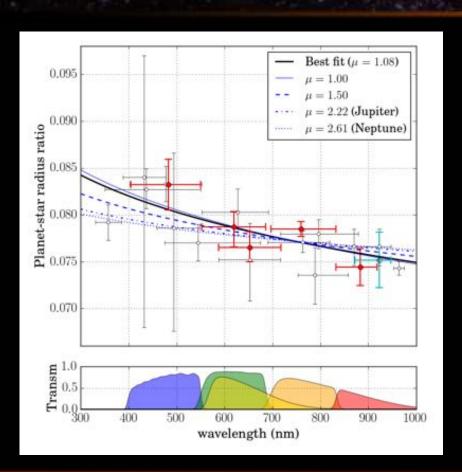
Parameter	Value
Period (day)	3.33665 ^{+0.00001} -0.00001
Inclination (degree)	89.13 ^{+0.26} -0.34
Radial (R⊕)	4.57±0.18
Mass (M _⊕)	13.9±1.5
Mean density (g cm ⁻³)	0.80±0.13
T _p (K) - Bond albedo = 0-0.4 - Heat redistribution factor = 0.25-0.5	497-690

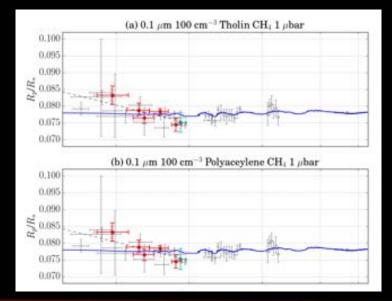



GJ3470b: Transit timing variation

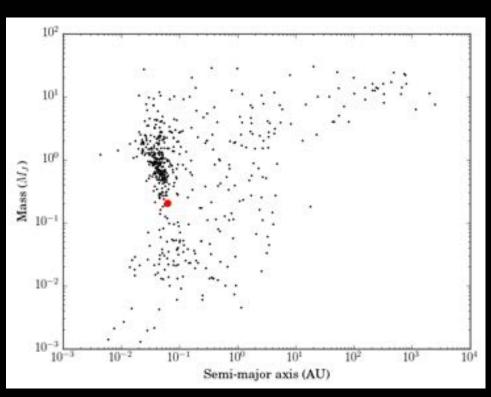
Linear fit to the O-C diagram to correct GJ3470b's ephemeris

$$T_0(E) = 2,455,983.70421 + 3.33665 E$$


- No significant TTV signal
- Upper mass limit of the second planet
 - Ruled out a nearby second planet with period between 2.5 and 4.0 d from the mutual Hill sphere.
 - Excluded a Jupiter-mass planet with period less than 10 d

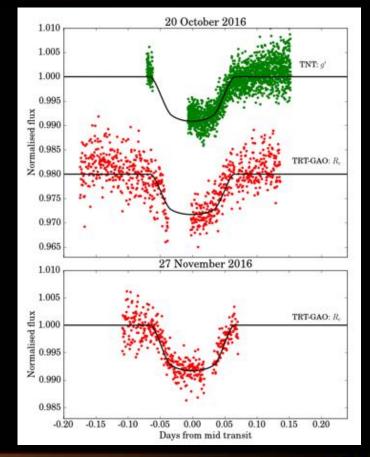


GJ3470b: Transmission spectroscopy


- Broadband optical transmission spectroscopy
- GJ3470b atmosphere mean molecular weight 1.08
- Use Howe & Burrows (2012) planetary atmosphere model
- A methane atmosphere with high particle (100 cm⁻³) abundance haze (tholin or polyaceylen) at high altitude (1-1000 μ bar) provide the best fit with χ^2 = 1.38 to 1.40

HAT-P-47b: Low density sub-Saturn mass exoplanet

- HAT-P-47b is a transiting low density hot sub-Saturn mass exoplanet orbiting a moderately bright F-type star (V=10.7) (Bakos et al. 2016).
- HAT-P-47b is one of the lowest mass exoplanet with radius greater than Jupiter radius.
- It falls in the desert between hot Jupiters and hot super Earth in the semi-major axis-mass plane.
- Two nights photometric observations were conducted in 2016
 - 2.4 m TNT with ULTRASPEC (1 night)
 - 0.7 m TRT-GAO (2 nights)

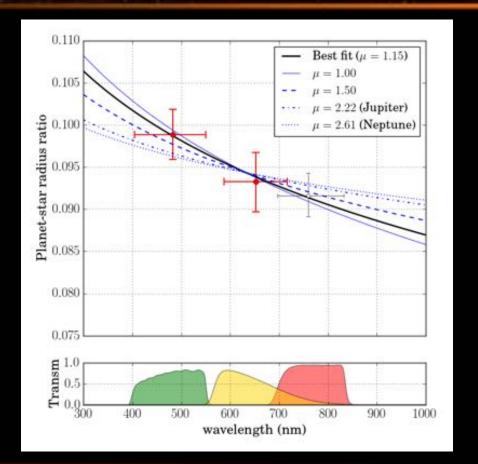

Data retrieved from https://exoplanetarchive.ipac.caltech.edu/ on 22th May 2017

HAT-P-47b: Planetary parameters

- Light curves with best fit model from TAP analysis
 - Filter R_c and g'
- Using Radial-velocity semi-amplitude 19.9±3.8 ms⁻¹ from Bakos et al. (2016)
- The largest sub-Saturn mass exoplanet.

Parameter	Value
Period (day)	+0.00068 4.73214 _{-0.00065}
Inclination (degree)	84.47 ^{+0.30} -0.30
Radial (R _J)	1.42±0.07
Mass (M _J)	0.205±0.039
Mean density (g cm ⁻³)	0.095±0.023
T _p (K) - Bond albedo = 0-0.4 - Heat redistribution factor = 0.25-0.5	1190-1640

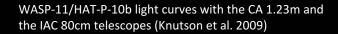


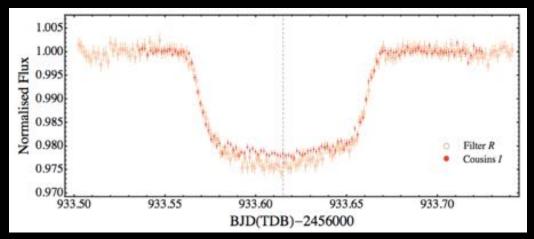

HAT-P-47b: TTV and transmission spectroscopy

Corrected HAT-P-47b's ephemeris

$$T_0(E) = 2,455,557.52879 + 4.73217 E$$

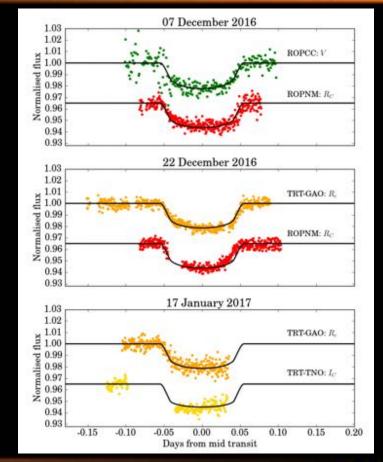
- Broadband optical transmission spectroscopy
- HAT-P-47b atmosphere mean molecular weight 1.15





WASP-11/HAT-P-10b: Inflated sub-Saturn mass exoplanet

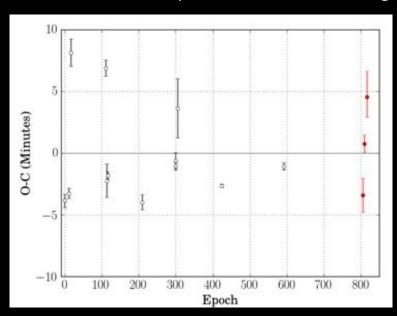
- WASP-11/HAT-P-10b is an inflated sub-Saturn mass exoplanet orbiting a K-type star (V=11.9) (West et al. 2008 and Bakos et al. 2009).
- A transit event of WASP-11/HAT-P-10b was observed simultaneously with the CA 1.23m (Red, R_c) and the IAC 80cm (Orange, I_c) telescopes. The light curves show the difference in transit depth (Mancini et al. 2015).
- Three nights photometric observations were conducted between 2016 and 2017
 - 0.5 m TRT-TNO (1 night)
 - 0.7 m TRT-GAO (2 nights)
 - 0.7 m Nakhon Ratchasima (2 nights)
 - 0.7 m Chachoengsao (1 night)

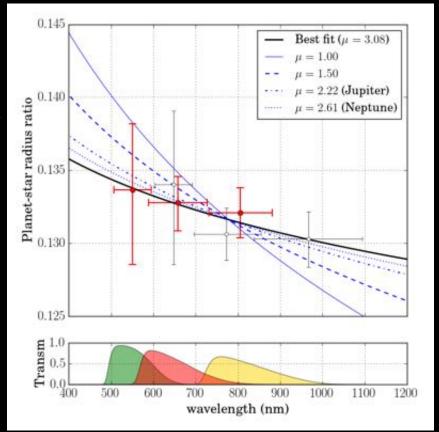


WASP-11/HAT-P-10b: Planetary parameters

- Light curves with best fit model from TAP analysis
 - Filter V, R_c and I_c
- Using Radial-velocity semi-amplitude 82.7±4.2 ms⁻¹ from Mancini et al. (2015)

Parameter	Value
Period (day)	3.82246 ^{+0.00001} -0.00001
Inclination (degree)	88.67 ^{+0.26} -0.34
Radial (R _J)	1.04±0.03
Mass (M _J)	0.547±0.033
Mean density (g cm ⁻³)	0.653±0.075
T _p (K) - Bond albedo = 0-0.4 - Heat redistribution factor = 0.25-0.5	735-1010

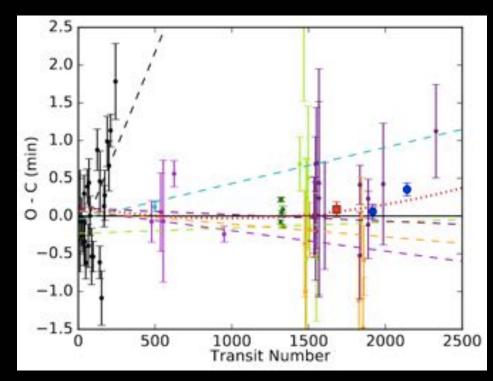



WASP-11/HAT-P-10b: TTV and transmission spectroscopy

Corrected WASP-11/HAT-P-10b's ephemeris

$$T_0(E) = 2,454,729.90915 + 3.72248 E$$

- Broadband optical transmission spectroscopy
- WASP-11/HAT-P-10b atmosphere mean molecular weight 3.08



WASP-43b: hot Jupiter with possible orbital decay

- WASP-43b is a hot-Jupiter exoplanet orbiting a K-type star (V=12.4) (Hellier et al. 2011).
- Blecic et al. (2014), Murgas et al. (2014) and Jiang et al. (2016) proposed an orbital decay of the WASP-43b
- Hoyer et al. (2016) and Stevenson et al. (2017) ruled out the orbital decay of the WASP-43b
- Five nights photometric observations were conducted in2017
 - 0.5 m TRT-TNO (4 nights)
 - 0.7 m TRT-GAO (2 nights)

Observed TTV of WASP-43b (Stevenson et al. 2017)

WASP-43b: Orbital decay

WASP-43b orbital period change rate 0.0013 sec/year

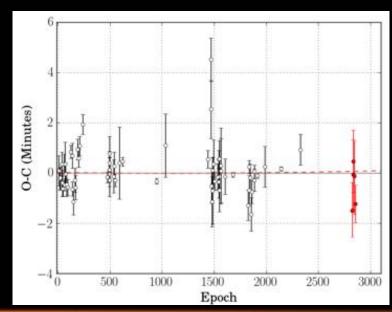
• Blecic et al. (2014)

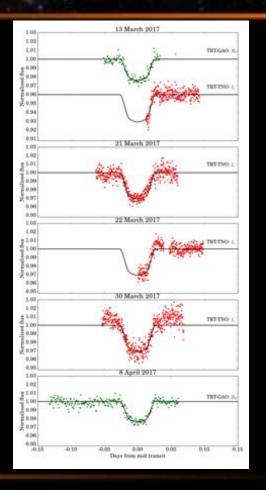
-0.095 sec/year

Murgas et al. (2014)

-0.15 sec/year

Jiang et al. (2016)


-0.029 sec/year


Hoyer et al. (2016)

-0.001 sec/year

Stevenson et al. (2017)

0.009 sec/year

Conclusions

- Follow-up observations of exoplanets using 0.7m class Thai telescopes and 2.4m Thai National Telescope to study their transit timing variations and atmospheres.
 - GJ3470b, HAT-P-47b, WASP-11/HAT-P-10b, WASP-43b, WASP-107b, WASP-127b, HAT-P-26b, HAT-P-33b and KELT-3b

GJ3470b

- From TTV analysis, we can exclude a Jupiter-mass planet with period less than 10 days in the system.
- GJ3470b atmosphere mean molecular weight 1.08.
- A methane atmosphere with high particle (100 cm⁻³) abundance haze (tholin or polyaceylen) at high altitude (1-1000µbar) provide the best fit with $\chi^2 = 1.38$ to 1.40.

HAT-P-47b

- The largest sub-Saturn mass exoplanet.
- HAT-P-47b atmosphere mean molecular weight 1.15.

WASP-11/HAT-P-10b

• WASP-11/HAT-P-10b atmosphere mean molecular weight 3.08.

WASP-43b

WASP-43b orbital period change rate 0.0013 sec/year.

Thank you

