X-ray Observations of Supernova Remnants

0. Contents of this talk

1. Introduction of SNRs

2. Recent Progress of X-ray study of SNRs

3. SNRs with future X-ray missions

1. Introduction of SNRs

1.1. Role of supernova remnants in the universe

Thermal aspects:

thin plasma with kT ~ keV time scale <~ 10⁴ yrs

distribute heavy elements Origin: explosion of light (Ia) heavy (cc) stars Nonthermal aspects:

shock v ~ 10³⁻⁴ km/s accelerate particles efficiently

distribute cosmic rays

distribute thermal/kinetic E compact stars

SNRs make the diversity of the universe !

We kept optical observations of SNe long time ! Japanese record of guest stars

the number is limited

1.2. Why X-ray observations are strong to understand SNRs? shock velocity: 10³⁻⁴ km s⁻¹

- -> ejecta and interstellar medium heat up to ~1 MK or 0.1 keV
- -> ionized thin thermal plasma (n ~ 1 cm^{-3})
- -> thermal bremsstrahlung in X-ray band
 - + characteristic X-rays from ionized heavy ions

1.3. Types of Supernova remnants

Type Ia End-point of mass accretion to WD or up to M_{ch} (SD) WD-WD merger (DD)

```
A lot of Fe, Ni, Cr, Mn
Isotropic explosion ?
```

Core-collapsed (CC)

End-point of heavy stars (>~ 10 M_o)

A lot of lighter elements O, Ne, Mg, Si, S, ...

"Standard candle"

Neutron stars, black holes

Questions:

Can we distinguish Ia/cc for SNRs with X-ray observations? Do they have diversity more than types? ratio of SD/DD? progenitor mass of CCs? 1.4. Conventional method of type diagnostics

(1) Searching for compact sources

Some of CC SNe: remain neutron starsIa SNe:remain nothing

Young neutron stars:

emit blackbody emission with kT ~ keV forms pulsar wind nebulae with bright synchrotron X-rays

They are CC SNRs !

(2) Abundance pattern of heated ejectaIa SNRs have abundant Fe / Fe groupCC SNRs have abundant lighter alpha-elements (Si, S, Mg, ...)

cannot see unheated ejecta -> cannot be used for very young SNRs contamination of heated ISM -> cannot be used for old SNRs

2. Recent Progress of X-ray study of SNRs

2.1. Type estimation from X-ray morphology (Lopez+11)

Ia: isotropic explosion cc: anisotropic explosion

circular SNR ? more complicated SNR ?

Lopez+11: wavelet analysis of Chandra image of many SNRs

la cc

CC SNRs has more distorted morphology !

NuSTAR: ⁴⁴Ti enables us to access unheated ejecta CC SNR expansion with ⁴⁴Ti

SN 1987A (~30 yrs)

Only red-shift ⁴⁴Ti line -> asym. expansion of ejecta

Cas A (~330 yrs)

asym. distribution Neither isotropic nor axial symmetric expansion

CC SNRs show highly asymmetric expansion

Does Ia expand isotopically ?

SN1006 (Uchida+13)

Si, S, Fe are abundant in south eastern region

Tycho (Yamaguchi+17)

pure iron ejecta (no Cr, Mn)

Several "text-book" Ia remnants show anisotropy. It is still an open issue how isotropic Ia explosions are.

important on heavy element distribution in the universe, maximum luminosity of SNe (amount of Ni), etc.

2.2. Type estimation from Iron K line center (Yamaguchi+14)

low ionization state high ionization state

Ia has lower E iron-K

Ia is really in the low density ISM

More classification from spectral info.?

2.3. Origin of la?

~M_{ch}, dense core (ρ≥ 2e8 g/cm³) sub M_{ch}, less dense core high ρ in SD core makes more Ni, Mn due to more electron capture

3C397 needs M_{ch}

Strong diagnostics to distinguish SD and DD Related to abundance of CGs

2.4. Variety of CC SNRs

Cas A NASA/CXC/SAO G11.2-0.3 NASA/CXC/Eureka Scientific/Roberts+ Crab nebula

bright thermal faint NS

both thermal/PSR

only bright pulsar/PWN

What makes such difference ?

Crab Thermal line search with Calorimeter onboard Hitomi -> very tight upper-limit plasma mass < 1Mo -> electron capture SN ?

2.5. Where are SNRs with BHs ? Not yet, but we have several SNRs with a HMXB.

SXP 1062 in the SMC

(Hénault-Brunet+12)

HMXB: P=1062s, maybe neutron star SNR: too old to see in X-rays (r=20 pc)

CXOUJ053600.0-673507 in DEML241

HMXB with O5III(f) star (Seward+12) the most luminous gamma-ray binary (Corbet+16) abundance pattern -> progenitor > 20 Mo (Bamba+06)

Can we find first SNR w. BH ??

3. SNRs with future X-ray missions

Most important technology for X-ray studies of SNRs -> Energy resolution !!!

Excellent energy resolution enables us:

- to study SNR expansion with Doppler broadening of emission lines
- to study minor elements such as Cr, Mn

X-ray calorimeter: energy resolution ~ 5 eV @ 5.9 keV for diffuse sources ~30 times better than present detectors

Ideal for SNR studies

XARM (Hitomi recovery mission): will be launched ~ 2020Athena:will be launched ~ 2028

4. Summary

- Supernova remnants make diversity of the universe in thermal and nonthermal aspects.
- X-ray observations are strong tools to study supernova remnants.
- We can resolve Type of progenitor SNe.
 Both Ia and CC have variety.
- Future X-ray observatories will show us more.